### National Institute of Mental Health Psychoactive Drug Screening Program

## (NIMH PDSP)

# ASSAY PROTOCOL BOOK Version III

March 2018

Bryan L. Roth, MD, PhD

## Department of Pharmacology University of North Carolina at Chapel Hill

This is an updated version as of March 2018 of the previous PDSP assay protocol book (2012), and contains detailed descriptions of experimental procedures, data analysis, and representative figures for radioligand binding and functional assays performed by the NIMH-PDSP.

#### **Table of Contents**

- 1. Radioligand binding assays
  - 1.1. Drug plate preparation (Hamilton ASM® and STAR®)
  - 1.2. Cell culture and membrane fraction preparation
    - 1.2.1. Calcium phosphate precipitation transfection adherent HEK293 T
    - 1.2.2. Suspension HEK293 transfection
    - 1.2.3. Membrane preparations from cultured cells
    - 1.2.4. Membrane preparations from tissues (general)
    - 1.2.5. Membrane preparations from rat brain for specific targets
    - 1.2.6. List of cell lines that PDSP maintains
    - 1.2.7. Media recipes
  - 1.3. Saturation binding assay
  - 1.4. Primary and secondary binding assay
  - 1.5. Radioligand binding assays for nicotinic acetylcholine receptors
    - 1.5.1. Cell culture and membrane preparation
    - 1.5.2. Radioligand binding assay
    - 1.5.3. Primary and Secondary binding assay
    - 1.5.4. Data analysis and result reporting
  - 1.6. General binding data entry, analysis, and quality control (non nAChRs)
    - 1.6.1. Built-in analysis tool in the PDSP Database
    - 1.6.1.1. Saturation binding results analysis and reporting

| 1.6.1.2. | Primary | binding $^{\prime}$ | results analy | vsis and | reporting |
|----------|---------|---------------------|---------------|----------|-----------|
|          |         |                     |               |          |           |

- 1.6.1.3. Secondary binding results analysis and reporting
- 1.6.2. Data analysis using Microsoft Excel and Prism v5.0
- 1.6.2.1. Saturation binding results analysis
- 1.6.2.2. Primary binding results analysis
- 1.6.2.3. Secondary binding results analysis
- 1.7. Table of conditions for binding assays and representative figures
- 2. Functional assays
  - 2.1. Drug plate preparations for functional assays
  - 2.2. General procedures for PDSP functional assays
  - 2.3. Data analysis for functional assays
    - 2.3.1. Agonist activity
    - 2.3.2. Antagonist activity
    - 2.3.3. Schild plot analysis
    - 2.3.4. Quantifying bias
    - 2.3.5. Allosteric operational analysis
    - 2.3.6. List of available functional assays at NIMH-PDSP
  - 2.4. Functional assays for  $G_q$  coupled GPCRs:
    - 2.4.1. Calcium mobilization assays (FLIPRTETRA)
    - 2.4.2. Intracellular inositol phosphate accumulation
    - 2.4.3. Table of Gq coupled GPCRs with functional assays done by the PDSP

- 2.4.4. Representative figures
- 2.5. Functional assays for G<sub>i</sub> or G<sub>s</sub> coupled GPCRs: split luciferase based biosensor cAMP assay (GloSensor® cAMP assay)
  - 2.5.1. Cell culture and transfection
  - 2.5.2. Split luciferase based cAMP assay Luciferin first protocol
  - 2.5.3. Split luciferase based cAMP assay Drug first protocol
  - 2.5.4. Data processing and analysis
  - 2.5.5. Table of G<sub>i</sub> or G<sub>s</sub> coupled GPCRs with functional assays done by the PDSP
  - 2.5.6. Representative figures
- 2.6. Functional assays for G-protein independent  $\beta$ -arrestin recruitment
  - 2.6.1. GPCR Tango construct design and HTLA cells
  - 2.6.2. GPCR Tango assay design
  - 2.6.3. Data processing and analysis
  - 2.6.4. Table of GPCR Tango constructs with representative curves
  - 2.6.5. Representative curves (agonist and antagonist activity)
- 2.7. PRESTO-GPCRome screening
  - 2.7.1. HTLA cell culture and plating
  - 2.7.2. GPCRome Tango (DNA) plate preparation
  - 2.7.3. Reverse transfection with Calcium phosphate precipitation method
  - 2.7.4. Compound addition and stimulation
  - 2.7.5. Data processing, analysis, representative figures

| 2.8.  | BRET-based transducerome screening platform                            |
|-------|------------------------------------------------------------------------|
| 2.8.  | 1. Introduction                                                        |
| 2.8.  | 2. Assay design and optimization                                       |
| 2.8.  | 3. Assay procedure and representative figures                          |
| 2.8.  | 4. Additional resources                                                |
| 2.9.  | hERG functional assay: Thallium (TI <sup>+</sup> ) flux assay (FluxOR) |
| 2.9.  | 1. HEK293 hERG cell culture                                            |
| 2.9.  | 2. TI <sup>+</sup> flux assays (FluxOR) for hERG inhibitors            |
| 2.9.  | 3. TI+ flux assays (FluxOR) for hERG trafficking modulators            |
| 2.9.  | 4. Data processing and analysis                                        |
| 2.9.  | 5. Representative figures                                              |
| 2.10. | hERG electrophysiology: automated patch-clamp PatchXpress assay        |
| 2.10  | .1. External and internal solutions                                    |
| 2.10  | .2. HEK293 hERG cell preparation                                       |
| 2.10  | .3. Drug plate preparation                                             |
| 2.10  | .4. Patch procedure                                                    |
| 2.10  | .5. Data processing and analysis                                       |
| 2.10  | .6. Representative figures                                             |
| 2.11. | Neurotransmitter transporter functional assay                          |
| 2.11  | 1. Neurotransmitter transporter uptake assay kit and background        |
| 2.11  | 2. Assay procedure                                                     |

| 2.11.3. Data processing and analys | SİS |
|------------------------------------|-----|
|------------------------------------|-----|

- 2.11.4. Representative figures
- 2.12. Multidrug resistance transporter -1 (MDR-1) modulation assay
  - 2.12.1. MDR assay background
  - 2.12.2. MDR assay procedure
  - 2.12.3. Data processing and analysis
  - 2.12.4. Representative figures
- 2.13. Histone Deacetylase (HDAC) assay
  - 2.13.1. HDAC assay kit and principle
  - 2.13.2. HDAC assay procedure
  - 2.13.3. Data processing and analysis
  - 2.13.4. Representative figures
- 2.14. Monoamine Oxidase (MAO) activity assay
  - 2.14.1. MAO assay kit and principle
  - 2.14.2. Assay procedure
  - 2.14.3. Data processing and analysis
  - 2.14.4. Representative figures
- 2.15. Protein Kinase C (PKC) activity assay
  - 2.15.1. PKC assay kit and principle
  - 2.15.2. PKC assay procedure
  - 2.15.3. Data processing and analysis

- 2.15.4. Representative figures
- 2.16. Checkpoint Kinase 2 (CHK2) activity assay
  - 2.16.1. CHK2 assay kit and principle
  - 2.16.2. CHK2 assay procedure
  - 2.16.3. Data processing and analysis
  - 2.16.4. Representative figures
- 2.17. Nicotinic acetylcholine receptor functional assay <sup>86</sup>Rb<sup>+</sup> efflux
  - 2.17.1. nAChR <sup>86</sup>Rb<sup>+</sup> efflux assay introduction
  - 2.17.2. nAChR <sup>86</sup>Rb<sup>+</sup> efflux assay procedure
    - 2.17.2.1. Primary functional assay
    - 2.17.2.2. Secondary functional assay
  - 2.17.3. Data processing and analysis
  - 2.17.4. Representative figures
- 3. Master table of targets at NIMH-PDSP
- 4. References

#### **Section 1: Radioligand binding assays**

#### 1.1. Drug plate preparation for radioligand binding assays: Hamilton ASM® and STAR®

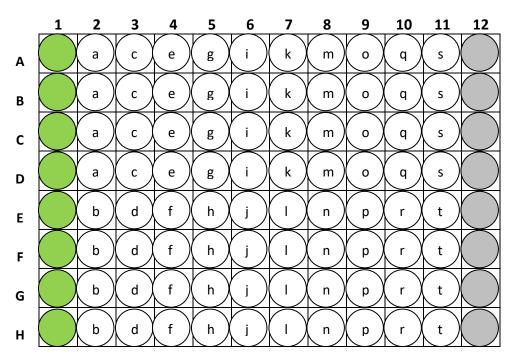
The NIMH PDSP uses an Integrated Sample Storage, Retrieval & Liquid Handling Robotic System (see SOW) to prepare assay plates for the research staff to perform experiments. Briefly, the system consists of a refrigerated storage module that stores the PDSP samples and reference compounds; a retrieval module that selects, thaws, uncaps and delivers the compounds; and a multi-station liquid handling platform to transfer the samples and standards to make assay plates. The system is controlled by four PC computers utilizing Hamilton's Microlab STAR Venus One and Sample Manager software suites. Considerable training is required to operate the system. Advanced training is required to program and trouble-shoot the system.

A set of steps to instruct the machines to create a plate is called a "method." Each method has hundreds of lines of instructions. Below is an overview of the steps required to create assay plates for primary and secondary assay plates. This is an overview of the liquid handling and major plate movement steps. Robotic movements for tip set-up, tip movements, tip recycling, plate staging, etc. are not included.

#### A. Primary Plate Preparation:

- 1. A "work list" is created by a senior staff member utilizing our PDSP Database.
- 2. The work list is downloaded onto the ASM computer.
- 3. The "run control" program is opened on ASM server computer.
- 4. The assay method corresponding to the assay to be run is selected; the ASM server and storage module, de-capper and robotic arms perform self-checks.
- 5. The user is prompted to select the work list to be run.
- 6. The "run control" program verifies the work list, prompts the user to select start and thaw time variables or defaults.
- 7. Sample retrieval begins in ASM storage module, which sends messages to appropriate liquid handling station.
  - B. The ASM storage module retrieves samples using the 2-dimensional bar code on each tube

- C. Samples are collected in an empty rack, inside the ASM Storage module.
- D. When all samples are collected, the rack is sent to the ASM server via an automated trolley and the server's internal single-grip arm.
- E. Samples are thawed with forced hot air according to protocol, with an option to enter thaw time.
- F. The rack is then delivered via the ASM Server single-grip arm and hand-off arm to the Capper/Decapper
- G. Sample tubes are uncapped and sent to the appropriate STAR deck
- 8. The user prepares the STAR liquid handler deck with proper plates, buffers and pipette tips. (Steps 8-14 are performed in parallel to step 7.)
- The STAR computer run control program (this is a separate instance from the ASM run control
  program) prompts the user for tip-counting verification; user also confirms that the protocol
  and plate count are correct.
- 10. STAR platform begins plating procedure.
- 11. Assay plates are distributed to the STAR deck (1 per final plate); the plate barcode is recorded and used throughout the remainder of the process to verify the integrity of sample tracking.
- 12. 97.5 microliters of buffer are added to rows A and E of each assay plate.
- 13. DMSO (vehicle control) is added to wells A1 and E1 of each assay plate.
- 14. STAR platform pauses with user input, and waits for drug delivery from the ASM (step 7f above).
- 15. Samples are mixed after step 7G is completed and the sample rack is delivered to the STAR deck.
- 16. 2.5 microliters of control reference compound are aspirated from the sample tube and distributed into the assay plate in wells A12 and E12 using the eight single-channel pipetters.
- 17. 2.5 microliters of each sample is aspirated from sample tubes and distributed into the assay plate in wells A2 through A11 and E2 through E11 using the eight single-channel pipetters.
- 18. Row A is then mixed and aliquoted from A to B and A to C and A to D with a single-row selection of pipette tips by the 96-well head, each well then has 25 microliters of combined sample and buffer.


- 19. Step 18 is repeated for row E-H to make replicates.
- 20. A plate map is created corresponding to the plate bar-code, samples added and receptor assigned.
- 21. Steps 16-20 are repeated for each assay plate. (See Figure 1 for primary drug plate map).

#### **B.** Secondary Plate Preparation:

- 1. A "work list" is created by a senior staff member utilizing our PDSP Database.
- 2. The work list is down-loaded onto the ASM computer.
- 3. The "run control" program is opened by the user on the ASM server computer.
- 4. The assay "method" corresponding to the assay to be run is selected; the ASM server and storage module, de-capper and robotic arms perform self-checks.
- 5. The user is prompted to select the work list to be run.
- 6. The "run control" program verifies the work list, prompts the user to select start and thaw time variables or defaults.
- 7. Sample retrieval begins in the ASM storage module, and sends messages to the appropriate liquid handling station.
  - A. The ASM storage module retrieves samples using the 2-dimensional bar code on each tube
  - B. Samples are collected into an empty rack, inside the ASM storage module
  - C. When all required samples are collected, the rack is sent to the ASM server via an automated trolley and the server's internal single-grip arm.
  - D. Samples are thawed with forced hot air according to protocol with an option to enter thaw time.
  - E. The rack is then delivered via the ASM Server single-grip arm and hand-off arm to the Capper/Decapper
  - F. Sample tubes are uncapped and sent to the appropriate STAR deck
- 8. The user prepares the STAR liquid handler deck with proper plates, buffer and pipette tips. (Steps 8-14 are performed in parallel to step 7.)
- 9. The STAR computer run control program (this is a separate instance from the ASM run control) prompts the user for tip-counting verification; the user also confirms that the protocol and plate count are correct.

- 10. The STAR platform begins the plating procedure.
- 11. Assay plates are distributed to the STAR deck (1 dilution plate and 3 plates for replicates per set); the plate barcodes are recorded and are used throughout our process to verify the integrity of sample tracking.
- 12. 180 microliters of buffer are added to all wells of each assay plate with the 96CORE head.
- 13. 15 microliters of buffer are added to column 12, 40 microliters are aspirated from column 11.
- 14. The STAR platform pauses and waits for drug delivery from ASM (step 7f above).
- 15. Samples are mixed.
- 16. 5 microliters of sample (or control compound) is aspirated from the sample tubes and distributed into the first dilution plate in column 12 using the eight single-channel pipetters.
- 17. 40 microliters of buffer are removed from column 11.
- 18. After mixing, 60 microliters are aspirated from column 12 and dispensed into column 11.
- 19. A serial dilution is performed; 20 microliters is aspirated from/dispensed to col 12 to 10, col 10 to 8, col 8 to 6, col 6 to 4, col 4 to 2, col 11 to 9, col 9 to 7, col 7 to 5 and, col 5 to 3.
- 20. The entire plate is mixed again and then three replicates with 25 micoliters per well are made.
- 21. Steps 16-20 are repeated for each additional set of four plates.
- 22. Plate maps are created corresponding to the plate barcode, samples added and receptor assigned for all plates on the deck. (See Figure 2 for secondary drug plate map).

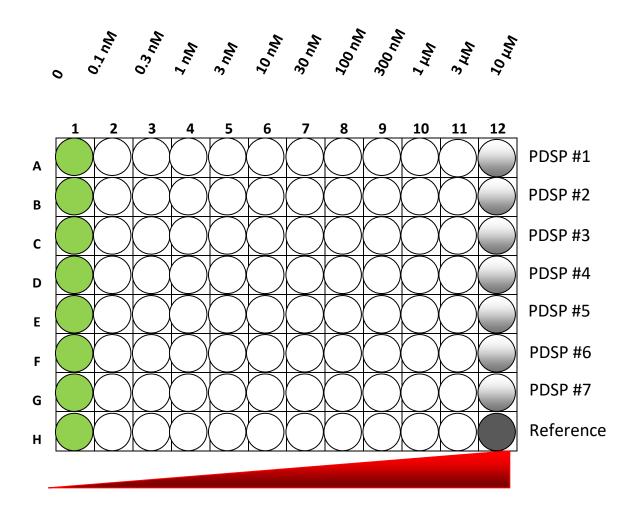
Managing the workflow of the automated system is extremely important. First, the overall flow, i.e., what assays to select, when to make assay plates and, assigning assays to a researcher must be performed by a senior staff member. Second, the workflow for the system also requires careful planning and scheduling. Operating the system can be performed by a researcher. The operation of the system *requires* careful attention to detail and significant planning in order to achieve <u>optimal performance</u>. Preparing the liquid handling deck for a method, being attentive to tip usage, having all the reagents ready prior to start, having all consumables ready prior to start, as well as the sequence of primary versus secondary methods to minimize transition time between runs are all required to have the system operate at 35-plus hours per week (its current utilization).



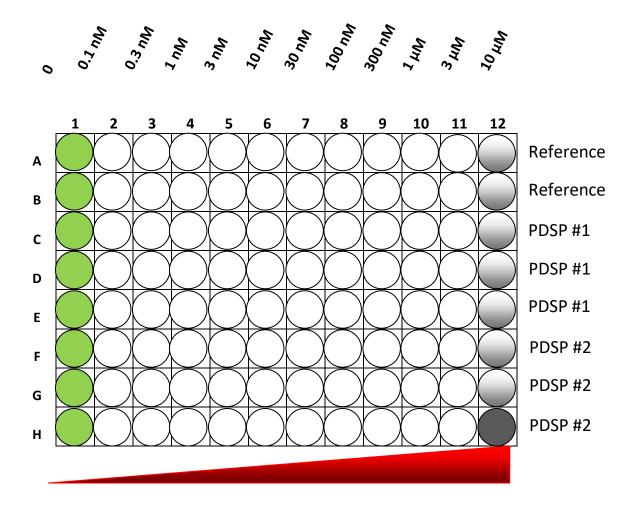
Input Barcodes:

BAGS33

#### Primary Binding Plates:


Barcode: BAGS33

Receptor: H3-0 Primary BAGS33 03


Date: 3-14-2013 09-13-18

5 4 10 A Empty 27054 22578 22580 22581 22582 22583 22584 22585 26656 26657 Histamine B Empty 27054 22578 22580 22581 22582 22583 22584 22585 26656 26657 Histamine CEmpty 27054 22578 22580 22581 22582 22583 22584 22585 26656 26657 Histamine DEmpty 27054 22578 22580 22581 22582 22583 22584 22585 26656 26657 Histamine E Empty 26658 26772 26787 26788 26789 26790 26791 26793 26794 26796 Histamine F Empty 26658 26772 26787 26788 26789 26790 26791 26793 26794 26796 Histamine GEmpty 26658 26772 26787 26788 26789 26790 26791 26793 26794 26796 Histamine HEmpty 26658 26772 26787 26788 26789 26790 26791 26793 26794 26796 Histamine

Figure 1. 96-well drug plate setup diagram (up) and an actual barcoded plate (bottom) for primary radioligand binding assays. The drug plate is designed to contain 20 compounds (compound "a" to compound "t" in Columns 2 - 11, each in quadruplicate) and one reference compound (Column 12), 25 μl per well at 50 μM (5x of final assay concentration of 10 μM). Column 1 contains buffer only, and is therefore designated for total binding (0% inhibition). Column 12 contains reference compound (histamine in this case) is designated as nonspecific binding (100% inhibition).



**Figure 2a**. 96-well drug plate map for secondary radioligand binding assays. The drug plate is designed to contain 7 PDSP compounds (Rows A to G) and 1 reference compound (Row H) as indicated at right of the plate, one compound per row and 25  $\mu$ l per well at 5x of final concentrations as indicated on top of the plate. Well H12 is designated for nonspecific binding and column 1 is designated for total binding for the plate. Each secondary assay consists of 3 sets of identical 96-well plates.



**Figure 2b**. 96-well drug plate map for secondary radioligand binding assays. The drug plate is designed to contain 2 PDSP compounds (Rows C to H) and 1 reference compound (Rows A and B) as indicated at right of the plate, therefore each PDSP compound is assayed in triplicate and the reference compound in duplicate. Each well contains 25  $\mu$ l at 5x of final concentrations as indicated above the plate.

#### 1.2. Cell culture and membrane fraction preparation

The majority of binding assays performed by the NIMH PDSP staff employ stably or transiently transfected cell lines expressing mainly human recombinant receptors, monoamine transporters, or ion channels. A detailed description of the cell lines, the culture and sub-culture conditions, and the appropriate media are listed in **Table 1**.

#### 1.2.1. Calcium phosphate precipitation transfection for adherent HEK293 T cells.

2x HBS: 140 mM NaCl, 1.5 mM Na<sub>2</sub>HPO<sub>4</sub>, 50 mM HEPES, pH 7.05, room temperature.

The calcium phosphate precipitation method was adapted from Jordan et al (1996)(1). In brief, HEK293T cells are subcultured into 15-cm dishes at a density of 8-10 million cells per dish and incubated overnight. For each dish of 15-cm,  $18 \mu g$  DNA,  $100 \mu l$  of 2.5 M CaCl<sub>2</sub>,  $100 \mu l$  of TE (1 mM Tris HCl, 0.1 mM EDTA, pH 7.60) are diluted into a final volume of 1 ml water. The mixture is then quickly added to an equal volume of 2x HBS and added dropwise to cells. The cells are then incubated overnight and for another day or two in fresh growth medium. For transient transfections with 5-HT receptors, we use medium containing dialyzed FBS overnight before harvesting. Cells are usually harvested 48-72 hours after transfection.

#### 1.2.2. Suspension HEK293 tranfection.

The PDSP also uses suspension HEK293 cells to obtain high levels of protein expression for binding assays (2). HEK293 suspension culture is maintained in flasks (115 rpm, 37°C, and 8% CO<sub>2</sub>) with the Expi293 Expression Medium with GlutaMax-1 (Life Technologies) supplemented with Pen/Strep (such as 30 ml medium in a 125 ml flask), and passaged when they reach a density of 5-7 million cells per ml. When seeding for a new passage, cell density is maintained at 0.5-0.75 million cells per ml. For transfection, we use the ExpiFectamine 293 Transfection Kit (Life Technologies). Cells are first subcultured in the Expi293 medium without Pen/Strep at a density of 3 million cells per ml for 25.5 ml in a 125 ml flask. To make the transfection mix (for each 125 ml flask), 30  $\mu$ g receptor DNA is mixed in 1.5 ml OptiMEM medium in one tube and 80  $\mu$ l of ExpiFetamine reagent is mixed in 1.5 ml OptiMEM medium in another tube. Both tubes are incubated for 5 min separately at RT and then for

20-30 min after being mixed together at RT. The mixture is then added to cells for overnight incubation at 115 rpm, 37°C, and 8% CO<sub>2</sub>. At 16-20 hr after the initial transfection, 0.15 ml Enhancer #1 and 1.5 ml Enhancer #2 are added and the culture are incubated for another 20-28 hrs to enhance protein expression (3). Cells are then collected for membrane preparation or kept at -80°C until membrane preparation (next section).

- **1.2.3.** Membrane preparations from stable or transiently transfected cells. To make membrane fractions from stably transfected cell lines, cells are subcultured into 15-cm dishes and grown to 90% confluency. For 5-HT receptors, cells are incubated overnight in either serum-free medium or medium containing 1% dialyzed fetal bovine serum. The next day, the cells are rinsed with PBS, scraped off into 50 ml conical tubes, and pelleted by centrifugation ( $1000 \times g$ ,  $10 \times g$ ) min at 4°C). The cell pellet is resuspended in chilled (4°C) lysis buffer (50 mM Tris HCl buffer, pH 7.4) and triturated gently for hypotonic lysis. The suspension is then centrifuged at 21,000 x g for 20 min (4°C) to obtain a crude membrane fraction pellet. The fresh membrane pellet is then resuspended in cold lysis buffer with 3x volumes of the pellet size and is immediately subjected to the Bradford protein assay to determine protein concentration, followed by a saturation binding assay (see following section for details) to determine receptor expression level and the affinity of the selected radioligand. Based on the receptor expression level and the K<sub>d</sub> value, fresh membrane suspensions are stored at -80 °C in small aliquots such that one aliquot is enough for one 96-well plate to have at least 500 cpm/well when assayed at  $0.5 1.0 \times K_d$  value of the hot ligand.
- **1.2.4. Membrane preps from tissues.** To make membrane fractions from tissues, crude membrane fractions are prepared from rodent (typically rat or guinea pig brain or kidney, purchased from PelFreeze Biologicals). Here is the general procedure for membrane preparations unless otherwise stated. Frozen tissue (maintained at -80°C) is thawed on ice, homogenized on ice in 10 volumes of cold lysis buffer (50 mM Tris HCl, pH 7.4, containing protease inhibitor cocktail from Roche) using a Polytron homogenizer (6 pulses and 10 seconds per pulse). The homogenate is centrifuged at 1,000 x g for 10 min at 4°C to obtain supernatant. The supernatant is then centrifuged at 40,000 x g for 20 min, and then the resulting supernatant is decanted and replaced with the same ice-cold lysis buffer. Two or three additional rounds of homogenization-centrifugation are performed to ensure thorough

homogenization and also to wash out endogenous ligands (particularly important for GABA assays). The final pellet is resuspended in the same buffer and homogenized one last time. The fresh suspension is subjected to protein concentration measurement, saturation binding, and aliquoted for storage at -80°C for future use. Aliquots are also made such that each aliquot is enough for one binding assay in one 96-well plate to have at least 500 cpm/well when assayed with a  $0.5-1.0x~K_d$  level of the corresponding hot ligand.

1.2.5. Membrane preps from rat brain for NMDA radioligand binding assays. The protocol is adapted from Chiu et al., 1999 (4). In brief, rat brain is thawed on ice in SHE buffer (300 mM Sucrose, 10 mM HEPES, 2 mM EDTA, pH 7.3) and homogenized on ice in 20 ml ice-cold SHE buffer per gram of wet tissue using glass homogenizer (at least 6 strokes). The homogenate is centrifuged at  $1,000 \times g$  for 20 min at  $4^{\circ}$ C to collect supernantant. The supernatant is then centrifuged at  $16,000 \times g$  for 1h at  $4^{\circ}$ C. The pellet is suspended in the same SHE buffer and stored in aliquots (10 mg per aliquot after protein concentration determination) at  $-80^{\circ}$ C until use. Protein concentration is determined using the Bradford method. Immediately prior to assay, the aliquoted pellet is resuspended in 1 ml HE buffer (20 mM HEPES, 1 mM EDTA, pH 7.0) and centrifuged briefly in desktop centrifuge at  $4^{\circ}$ C to remove the sucrose. The pellet is then resuspended in 0.5 ml of HE buffer and incubated at  $37^{\circ}$ C for 30 min. The suspension is then centrifuged at  $13,000 \times g$  for 10 min at  $4^{\circ}$ C. The pellet is washed four times by resuspending it in 1 ml HE buffer, followed by centrifugation. The final pellet is resuspended to about 2 mg/ml concentration after protein concentration determination and is then used in binding assays at 100 ug per well, using the HE buffer supplemented with with 100  $\mu$ M sodium glutamate and 100  $\mu$ M glycine.

#### 1.2.6. List of cell lines and targets that PDSP uses for binding assays.

**Table 1**. List of cell lines and targets that PDSP uses for making membrane pallets for binding assays. All clones are stable lines, while transient cells are marked with "\*". Most clones are of human origin unless noted, such as (rat) behind receptor name. Detailed info about media is listed below the table.

| Receptor                 | Note | Parental cells    | Media (see details below the table) |
|--------------------------|------|-------------------|-------------------------------------|
|                          |      | Serot             | tonin (5HT)                         |
| 5-HT <sub>1A</sub>       |      | stable CHO        | 500 G418                            |
| 5-HT <sub>1B</sub>       |      | stable HEK        | 500 G418                            |
| 5-HT <sub>1D</sub>       | *    | HEKT              | COS/HEK                             |
| 5-HT <sub>1E</sub>       |      | stable HEK        | 500 G418                            |
| 5-HT <sub>2A</sub> (rat) |      | stable 3T3        | 500 G418                            |
| 5-HT <sub>2A</sub>       | *    | HEKT              | COS/HEK                             |
| 5-HT <sub>2B</sub>       |      | stable HEK        | 2 μg/ml Puromycin                   |
| 5-HT <sub>2C</sub>       |      | HEK T             | COS/HEK                             |
| 5-HT <sub>3</sub>        | *    | HEKT              | COS/HEK                             |
| 5-HT <sub>4</sub>        |      | НЕК Т             | COS/HEK                             |
| 5-HT <sub>5A</sub>       |      | Flp-In CHO        | DMEM/F-12 200 μg/ml Hygromycin B    |
| 5-HT <sub>6</sub>        |      | stable HEK        | 500 G418                            |
| 5-HT <sub>7A</sub>       |      | Stable HEK        | 2 μg/ml Puromycin                   |
|                          |      | Do                | ppamine                             |
| $D_1$                    | *    | HEKT              | COS/HEK                             |
| D <sub>2</sub>           |      | stable fibroblast | COS/HEK                             |
| D <sub>2L</sub>          |      | stable CHO        | F-12/10%FBS 400G418                 |
| D <sub>3</sub> (rat)     | *    | HEKT              | COS/HEK                             |
| D <sub>3</sub>           | *    | HEKT              | COS/HEK                             |
| D <sub>4</sub>           |      | Stable HEK        | DMEM/F12 10% CS Fe+                 |
| <b>D</b> <sub>5</sub>    | *    | HEKT              | COS/HEK                             |
|                          |      |                   | Opioid                              |
| DOR                      |      | stable HEK        | 200 G418                            |
| MOR                      |      | stable HEK        | 200 G418                            |
| KOR (rat)                |      | stable HEK        | 500 G418                            |
| KOR                      |      | stable HEK        | 500 G418                            |
| NOP                      | *    | HEKT              | COS/HEK                             |
|                          |      |                   | nitter Transporters                 |
| SERT                     |      | stable HEK        | 500 G418                            |
| NET                      |      | stable HEK        | hNET (250 G418)                     |
| DAT                      |      | stable HEK        | hDAT (350 G418)                     |
|                          |      | •                 | in and Oxytocin                     |
| V <sub>1A</sub>          |      | stable CHO        | V1A & OT media                      |
| $V_{1B}$                 |      | stable CHO        | V2 & V1B media                      |
| V <sub>2</sub>           |      | stable CHO        | V2 & V1B media                      |
| ОТ                       |      | stable CHO        | V1A & OT media                      |
|                          |      |                   | staglandin                          |
| EP-3                     | *    | HEKT              | COS/HEK                             |
| EP-4                     | *    | HEKT              | COS/HEK                             |
|                          |      |                   | renergic                            |
| $\alpha_{1A}$            |      | stable            | 500 G418                            |
| $lpha_{	exttt{1B}}$      | *    | HEKT              |                                     |

| Receptor                  | Note | Parental cells | Media (see details below the table) |
|---------------------------|------|----------------|-------------------------------------|
| $\alpha_{	exttt{1D}}$     |      | stable         | 500 G418                            |
| $\alpha_{2A}$             |      | stable MDCK    | 500 G418                            |
| $\alpha_{2B}$             | *    | HEKT           | COS/HEK                             |
| $\alpha_{2C}$             |      | stable MDCK    | 500 G418                            |
| β1                        |      | CHO Flp-In     | DMEM/F12 200 μg/ml Hygromycin B     |
| $\beta_2$                 |      | HEK Flp-In     | DMEM 100 μg/ml Hygromycin B         |
| β <sub>3</sub>            |      | HEK Flp-In     | DMEM 100 µg/ml Hygromicin B         |
| 1                         |      | Muscarin       | ic acetylcholine                    |
| $M_1$                     |      | stable CHO     | 250 G418                            |
| M <sub>2</sub>            |      | stable CHO     | 500 G418                            |
| M <sub>3</sub>            |      | stable CHO     | 500 G418                            |
| M <sub>3</sub> D (DREADD) |      | CHO Flp-In     | DMEM/F12 100 μg/ml Hygromycin B     |
| M <sub>4</sub>            |      | stable CHO     | 10% FBS F12                         |
| M <sub>4</sub> D (DREADD) |      | HEKT           | COS/HEK                             |
| $M_5$                     |      | stable CHO     | 250 G418                            |
|                           |      | Nicotinio      | cacetylcholine                      |
| α2β3                      |      | HEK            | 500 G418                            |
| α2β4                      |      | HEK            | 500 G418                            |
| α3β2                      |      | HEK            | 500 G418                            |
| α3β4                      |      | HEK            | 500 G418                            |
| α4β2                      |      | HEK            | 500 G418                            |
| α4β4                      |      | HEK            | 500 G418                            |
| α7                        |      | HEK            | 500 G418                            |
|                           |      |                | stamine                             |
| H <sub>1</sub>            |      | stable HEK     | 500 G418                            |
| H <sub>2</sub>            |      | Stable HEK     | In Progress                         |
| H <sub>3</sub>            |      | HEK Flp-In     | DMEM 100 μg/ml Hygromycin B         |
| H <sub>4</sub>            |      | HEK T          | COS/HEK                             |
|                           |      |                | nnabinoid                           |
| CB <sub>1</sub>           |      | HEK            | 500 G418, In Progress               |
| CB <sub>1</sub>           |      | HEK Flp-In     | DMEM 100 μg/ml Hygomycin B          |
| CB <sub>2</sub>           |      | HEK Flp-In     | DMEM 100 μg/ml Hygomycin B          |
|                           |      |                | lenosine                            |
| A <sub>1</sub>            | *    | HEKT           | COS/HEK                             |
| A <sub>2</sub> A          | *    | HEKT           | COS/HEK                             |
| $A_2A$                    |      | HEK            | 500 G418                            |
| A <sub>2</sub> B          | *    | HEKT           | COS/HEK                             |
| $A_3$                     | *    | HEKT           | COS/HEK                             |
|                           |      |                | anocortin                           |
| MC <sub>1</sub>           | *    | HEKT           | COS/HEK                             |
| MC <sub>2</sub>           | *    | HEKT           | COS/HEK                             |
| MC <sub>3</sub>           | *    | HEKT           | COS/HEK                             |

| Receptor          | Note | Parental cells   | Media (see details below the table) |
|-------------------|------|------------------|-------------------------------------|
| MC <sub>4</sub>   | *    | HEKT             | COS/HEK                             |
| MC <sub>5</sub>   | *    | HEKT             | COS/HEK                             |
|                   |      | Puri             | nergic P2Y                          |
| P2Y1              |      | Astrocyte line   | 500 G418                            |
| P2Y2              |      | Astrocyte line   | 500 G418                            |
| P2Y4              |      | Astrocyte line   | 500 G418                            |
| P2Y6              |      | Astrocyte line   | 500 G418                            |
| P2Y11             |      | Astrocyte line   | 500 G418                            |
| P2Y12             |      | Astrocyte line   | 500 G418                            |
|                   |      | Tra              | ice Amine                           |
| TA-1              | *    | HEKT             | COS/HEK                             |
| TA-3              | *    | HEKT             | COS/HEK                             |
| TA-4              | *    | HEKT             | COS/HEK                             |
| TA-5              | *    | HEKT             | COS/HEK                             |
|                   |      | Lysopho          | spholipid (LPA)                     |
| LPA1              | *    | HEKT             | COS/HEK                             |
| LPA2              | *    | HEKT             | COS/HEK                             |
| LPA3              | *    | HEKT             | COS/HEK                             |
|                   |      | Tach             | ykinin (NK)                         |
| NK <sub>1</sub>   |      | HEK              | 500 G418                            |
| NK <sub>2</sub>   |      | HEK              | 500 G418                            |
| NK <sub>3</sub>   |      | HEK              | 500 G418                            |
|                   |      |                  | mGluR                               |
| mGlu <sub>1</sub> | *    | HEKT             | In progress                         |
| $mGlu_2$          | *    | HEKT             | In progress                         |
| mGlu <sub>3</sub> | *    | HEKT             | In progress                         |
| mGlu <sub>4</sub> | *    | HEKT             | In progress                         |
| mGlu <sub>5</sub> |      | СНО              | 2 μg/ml Puromycin                   |
| mGlu <sub>5</sub> | *    | HEKT             | In progress                         |
| mGlu <sub>6</sub> | *    | HEKT             | In progress                         |
| mGlu <sub>7</sub> | *    | HEKT             | In progress                         |
| $mGlu_8$          | *    | HEKT             | In progress                         |
|                   |      |                  | Others                              |
| Ghrelin           |      | HEK Flp-In       | DMEM 100 μg/ml Hygomycin B          |
| PAR1              |      | Lung Fibroblast, | 500 G418                            |
|                   |      | PAR1 KO          |                                     |
| SMO               | *    | HEKT             | COS/HEK                             |
| SMO               |      | HEK              | 500 G418, in progress               |
| CCK <sub>2</sub>  |      | СНО              | 500 G418                            |
| Orexin-2          | *    | HEKT             | COS/HEK                             |
| RXFP1             | *    | HEKT             |                                     |
| RXFP2             | *    | HEKT             |                                     |
| RXFP3             | *    | HEKT             |                                     |
| RXFP4             | *    | HEKT             |                                     |

| Receptor            | Note | Parental cells | Media (see details below the table) |
|---------------------|------|----------------|-------------------------------------|
| GPR39               | *    | HEKT           |                                     |
| GPR4                | *    | HEKT           |                                     |
| GPR40               | *    | HEKT           | COS/HEK                             |
| GPR41               | *    | HEKT           | COS/HEK                             |
| GPR43               | *    | HEKT           | COS/HEK                             |
| GPR58               | *    | HEKT           | COS/HEK                             |
| GPR61               | *    | HEKT           | COS/HEK                             |
| GPR62               | *    | HEKT           | COS/HEK                             |
| GPR65               | *    | HEKT           | COS/HEK                             |
| GPR68               | *    | HEKT           | COS/HEK                             |
| GPR88               | *    | HEKT           | COS/HEK                             |
| Il-1 imidazoline    | *    | HEKT           | COS/HEK                             |
| HERG-K <sup>+</sup> |      | HEK            | 500ug/ml G418                       |
| Channel             |      |                |                                     |
| PC12                |      |                | COS/HEK                             |
| Cav1.2              |      | HEK            |                                     |
| Sigma1              | *    | HEKT           |                                     |
| Sigma2              | *    | HEKT           |                                     |

#### 1.2.7. Media Recipes

Details of media composition for cells are as follows (please note that DMEM is purchased as 1X high D-glucose (4,500 mg/L) with L-glutamine and supplemented upon receipt with penicillin/streptomycin (100 U/ml).

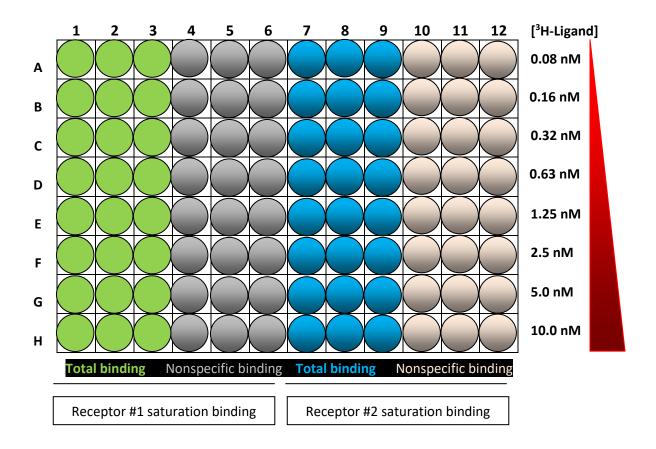
- 1. COS/HEK Medium (10% serum) 1 L: also used for transient transfection
- 1L DMEM, 100 ml FBS, 10 ml Pen/Strep
- 2. Standard G418 Media (500 µg/ml; 10% serum) 1L
- 1 L DMEM, 500 mg G418, 100 ml FBS, 10 ml Pen/Strep
- 3. Standard Puromycin Medium (2 μg/ml Puromycin:10% Serum) 1L
- 1 L DMEM, 2 aliquots (1mg/ml Puro in PBS), 100 ml FBS, 10 ml Pen/Strep
- 4. Standard Puromycin Medium +G418 Selection Medium
- 1L DMEM, 2 aliquots (1mg/ml Puro in PBS), 500 mg geneticin, 100 ml FBS, 10 ml Pen/Strep
- 5. Dialyzed Medium (1% dialyzed serum) 1 L

- 1 L DMEM, 10 ml Dialyzed FBS, 10 ml Pen/Strep
- 6. hNET Medium (250 μg/mL G418; 10% serum) 1 L
- 1 L DMEM, 250 mg geneticin, 100 ml FBS, 10 ml Pen/Strep
- 7. hDAT Medium (350 µg/ml G418; 10% serum) 1L
- 1L DMEM, 350mg geneticin, 100ml FBS, 10ml Pen/Strep
- 8. V1A and OT Medium (400  $\mu$ g/ml G418, 10% FSB, 15 mM HEPES) 1L
- 1L Hams F12, 400 mg Geneticin, 100 ml Calf serum, 15 ml HEPES (1M stock), 10 ml Pen/Strep
- 9. V2 & V1B Medium (150 μg/mL Zeocin; 10% Serum; 15 mM Hepes) 500 mL
- 1L Hams F12, 1.5 ml Zeocin (100mg/mL), 100ml Calf Serum, 15 ml Hepes (1M), 10 ml Pen/Strep
- 10. MOR/DOR selection medium (200 μg/ml G418, 10% serum) 1L
- 1 L DMEM, 200 mg G418, 100 ml FBS, 10 ml Pen/Strep
- 11. Alpha 1A and 1D selection medium (500 µg/ml G418, 10% serum) 1L
- 1 L DMEM, 500 mg G418, 100 ml FBS, 10 ml Pen/Strep
- 12. M4 medium (10% serum) 1L
- 1L Hams F12, 100 ml FBS, 10 ml Pen/Strep
- 13. D4 medium (10% serum) 1L
- 1L DMEM/F12, 15mM HEPES; with pyridoxine HCl, 100 ml Donor Calf Serum with Iron, 10 ml Pen/Strep
- 14. FLP-In CHO medium (10% serum) 1L
- 1L DMEM/F12 50/50, 10% FBS, 200 μg/ml Hygromycin B, 10 ml Pen/Strep
- 15. FLP-In HEK medium (10% serum) 1L
- 1L DMEM, 10% FBS, 100 ug/ml Hygromycin B, 10 ml Pen/Strep
- 16. PC-12 medium (10% serum) 1L
- 1L DMEM, 5% Horse Serum, 5% FBS, 10 ml Pen/Strep
- 17. HTLA medium 1L
- 1L DMEM, 100 ml FBS, 100 μg/ml Hygromycin B, 5 μg/ml Puromycin, 10 ml Pen/Strep

#### 18. Inositol/Inositol-free medium

500 ml BME (BME phrchased from LONZA), 5 ml Pen/Strep, 5 ml L-Glutamine

#### 19. McCoy medium for U2OS – 1L


1L McCoy, 100 ml dialyzed FBS, 50  $\mu$ g/ml Hygromycin B, 200  $\mu$ g/ml Zeocin, 100  $\mu$ g/ml G418, 0.1 mM non-essential AA, 25 mM HEPES, 1 mM Sodium Pyruvate, 10 ml Pen/Strep.

#### 20. Expi293 Expression Medium – 1L

1L Expi293 Expression Medium with GlutaMax-1, 10 ml Pen/Strep.

#### 1.3. Saturation binding assays

Saturation binding assays, usually performed immediately after the membrane fraction is obtained and protein concentration is determined (see above section for membrane preparations), are routinely carried out to measure receptor expression level ( $B_{max}$ ) and binding affinity ( $K_d$ ) of a selected radioligand. **Tables 2-24** lists the identity of hot ligands, reference compounds, and buffers for each family of targets. Saturation binding assays are carried out in 96-well plates in a final volume of 125  $\mu$ l per well. In brief, 25  $\mu$ l of radioligand is added to a 96-well plate according to the setup in **Figure 3**; followed by addition of 25  $\mu$ l binding buffer (for total binding) or 25  $\mu$ l reference compound at a final concentration of 10  $\mu$ M (for nonspecific binding). The reaction starts upon addition of 75  $\mu$ l of fresh membrane protein (typically 25 to 50  $\mu$ g per well) and the reaction is usually incubated in the dark at room temperature for 90 min. The reaction is stopped by vacuum filtration onto cold 0.3% polyethyleneimine (PEI) soaked 96-well filter mats using a 96-well Packard Filtermate harvester, followed by three washes with cold wash buffers (for details, see following **Tables 2 to 24**). Scintillation cocktail is then melted onto microwave-dried filters on a hot plate and radioactivity is counted in a Microbeta counter.



**Figure 3**. Radioligand saturation binding plate set up in a 96-well plate. Total and nonspecific binding are determined in the absence and presence of 10 μM of the appropriate reference compound, respectively, in the indicated final concentrations of hot ligand (nM). Final radioligand concentrations are shown as an example and different concentration ranges are used for different receptors, dependent on their  $K_d$  values for selected radioligand. The  $K_d$  value is usually in the middle, i.e. Row D or E. Amount of membrane protein (μg/well) are adjusted so that bound radioactivity is less than 10% of the total added radioactivity.

#### 1.4. Primary and secondary radioligand binding assays

Compounds are typically subjected to primary radioligand binding assays at targets selected by PIs and approved by the PDSP Director, Dr Bryan Roth. In primary binding assays, compounds are usually tested at a single concentration (10  $\mu$ M) and in quadruplicate in 96-well plates (see **Figure 1** for drug

plate map). Compounds showing a minimum of 50% inhibition at 10  $\mu$ M are tagged for secondary radioligand binding assays to determine equilibrium binding affinity at specific targets. In secondary binding assays, selected compounds are usually tested at 11 concentrations (0.1, 0.3, 1, 3, 10, 30, 100, 300 nM, 1, 3, 10  $\mu$ M) and in triplicate (3 sets of 96-well plates, see **Figure 2a** for drug plate map). An alternative drug plate set up is shown in **Figure 2b** which contains 2 PDSP test compounds and 1 reference compound. The drug map in **Figure 2a** is more efficient than the one in **Figure 2b**; the **Figure 2b** drug plate is usually made manually for urgent projects with a small number of high priority compounds to be tested immediately upon request.

Both primary and secondary radioligand binding assays are carried out in a final of volume of 125  $\mu$ l per well in appropriate binding buffers (for details, see **Tables 2 to 24**). The hot ligand concentration is usually at a concentration close to the  $K_d$  (unless otherwise indicated). Total binding and nonspecific binding are determined in the absence and presence of 10  $\mu$ M of the appropriate reference compound, respectively. In brief, plates are usually incubated at room temperature and in the dark for 90 min (unless otherwise indicated). Reactions are stopped by vacuum filtration onto 0.3% polyethyleneimine (PEI) soaked 96-well filter mats using a 96-well Filtermate harvester, followed by three washes with cold wash buffers (for details, see **Tables 2 to 24**). Scintillation cocktail is then melted onto the microwave-dried filters on a hot plate and radioactivity is counted in a Microbeta counter. A general procedure for binding assays is shown below (unless otherwise stated, such as radioligand binding assays for nAChRs; see details in the next section for nAChR binding assays).

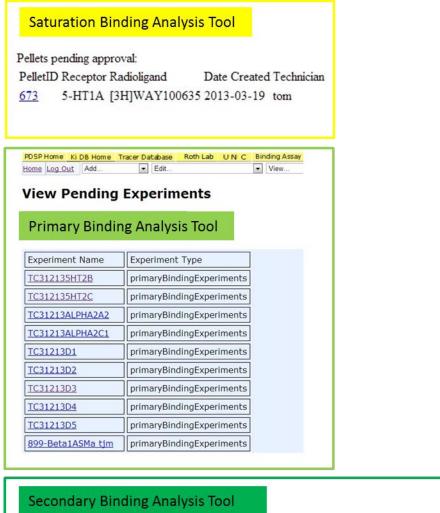
- 1. Receive barcoded primary drug plate or secondary drug plates from Hamilton STAR®
- 2. Check out drug plates and mark them "in progress" in PDSP database
- 3. Prepare appropriate binding buffers and wash buffers
- 4. Check out membrane pellets
- 5. Check pellet box to obtain K<sub>d</sub> and concentration to use for the radioligand
- 6. Prepare 2.5x of final concentration of radioligand working solution
- 7. Count 50 μl of radioligand working solution to confirm radioligand concentration and activity

- 8. Add 50 µl radioligand to each well
- 9. Add 50 μl membrane suspension to each well
- 10. Mix by gentle and brief shaking
- 11. Incubate the plates in the dark for desired time (usually 60 90 min at RT)
- 12. Soak filters in cold 0.3% PEI
- 13. Stop the reaction by vacuum filtration and washing
- 14. Dry the filters using microwave oven
- 15. Melt scintillation cocktail on top of filters
- 16. Wrap filters in plastic wrap
- 17. Count radioactivity
- 18. Download results, process and upload to PDSP database
- 19. Preview and submit results
- 20. Report progress in the PDSP database (completion or redo or repeat) after receiving approval email
- **1.5.** Radioligand binding assays for nicotinic acetylcholine receptors (nAChRs). Radioligand binding assays with nAChRs follow slightly different protocols from those outlined in the above sections and are detailed in the following sections, modified from previously published procedures (5, 6).
- **1.5.1. Cell culture.** The six stable cell lines expressing human  $\alpha 2\beta 2$ ,  $\alpha 2\beta 4$ ,  $\alpha 3\beta 2$ ,  $\alpha 3\beta 4$ ,  $\alpha 4\beta 2$ , or  $\alpha 4\beta 4$  subtype were established by stably co-transfecting HEK293 cells with a combination of one  $\alpha$  nicotinic receptor subtype gene and one  $\beta$  subunit gene. The cell line expressing  $\alpha 7$  nAChRs were established by stably transfecting HEK293 cells with the rat  $\alpha 7$  nAChR subunit. Cells are grown in minimum essential medium (MEM) supplemented with 10% fetal bovine serum, 100 units/ml penicillin G, 100 µg/ml streptomycin, and selective antibiotics at 37°C with 5% CO<sub>2</sub> in a humidified incubator.
- **1.5.2. Radioligand binding assays**. Radioligand binding assays of nAChRs (displacement of [<sup>3</sup>H]-epibatidine) use the above stably expressed nAChRs as well as rat forebrain tissue. In brief, cells

stably expressing nAChRs are harvested in 50 mM Tris HCl (pH 7.4), washed, homogenized with a Brinkmann polytron homogenizer and centrifuged at 36,000 g. The resulting washed membranes are then incubated with [ $^3$ H] epibatidine for 4h at room temperature in a final volume of 0.5 ml. Nonspecific binding is assessed in parallel incubations in the presence of 300  $\mu$ M nicotine. Bound and free ligands are separated by vacuum filtration through Whatman GF/C filters treated with 0.5% polyethylenimine. The filter-retained radioactivity is measured by liquid scintillation counting. Specific binding is defined as the difference between total binding and nonspecific binding.

- **1.5.3.** Primary and secondary nAChR binding assays. Primary binding assays are performed with 100 pM [ $^3$ H]-epibatidine and a single concentration of a PDSP test compound (10  $\mu$ M) in quadruplicate. Results are expressed as percentage inhibition of [ $^3$ H]-epibatidine specific binding. Compounds with a minimum of 25% inhibition are subjected to secondary binding assays to determine binding affinity. In the secondary binding assays, 0.5 nM [ $^3$ H]-epibatidine and 10 concentrations of the PDSP test compound are used to generate a competition binding curve. Results are analyzed in Prism 5.0 with nonlinear least-square regression to obtain  $K_i$  values. Nicotine at 300  $\mu$ M is included in all assays to define nonspecific binding and a nicotine dose-response curve is included as a positive control in the secondary binding assays.
- **1.5.4. Nicotinic acetylcholine receptor binding data entry and reporting.** Binding assay results with nAChRs are analyzed as indicated in above sections and K<sub>i</sub> values are then manually entered into the PDSP database. Figures and raw data are available to corresponding investigators upon request.
- 1.6. General binding data entry, analysis, and quality control for targets other than nAChRs.

Except for radioligand binding results with nAChRs, whose analysis is outlined in the above sections, binding assays for targets other than nAChRs are analyzed and reported as outlined in the following sections. Raw cpm data from the Microbeta counter are uploaded into the PDSP database and analyzed online using built-in analysis tools in the PDSP database. If necessary, binding assay results are also analyzed in Microsoft Excel (for primary binding results) or Prism v5.0 (for saturation binding and secondary binding results). The following sections provide detailed procedures for binding result


analysis and reporting, using both built-in tools in the PDSP database or third party software (Microsoft Excel and GraphPad Prism).

**1.6.1. Result analysis using built-in tools in the PDSP database.** The PDSP database is programmed to analyze results from saturation binding and competition binding assays (primary and secondary binding assays). The code for analyzing saturation and competition binding results is written in PHP using external library JQuery UI. The non-linear regression calculation is computed by the R statistical programming language using an Automatic Differentiation Model Builder (ADMB) to support robust non-linear regression calculation. To use built-in tools in the PDSP database to analyze binding assay results, technicians can uploade raw counting results in Excel spreadsheets from the Microbeta counters directly into the PDSP database through corresponding reporting systems designed for saturation binding, primary binding, or secondary binding assays. The online reporting system and analysis tools are designed to optimize data processing and quality control.

1.6.1.1. Saturation binding result analysis. Saturation binding assays are carried out whenever a new membrane preparation is made. The Protein amount per well is adjusted so that less than 10% of the total added radioligand is bound. Upon completion of saturation binding assays, technicians can upload saturation binding results in Excel spreadsheets directly to the membrane pellet section of the PDSP database. During the uploading and reporting process, technicians must provide (1) receptor identity and species information; (2) stable line or transient transfection or animal tissue; (3) amount of protein per well used; (4) radioligand identity and concentration. An automatic email will be sent to the designated PDSP administrator when saturation binding results are submitted and results are placed in a list pending review and approval as indicated in Figure 4. The PDSP database is programmed to analyze saturation binding results and generate a hyperbolic curve using a non-linear least squares curve-fitting algorithm to determine B<sub>max</sub> and K<sub>d</sub> values. The PDSP administrator will review and analyze the binding results online with options to (1) reject the whole set of results; (2) exclude apparent outliers among replicates; (3) request a repeat; or (4) approve the data set. Figure 5 shows a screen captured when a saturation binding assay is being reviewed. When the data set is approved, the PDSP administrator decides on (1) amount of protein per well and (2) radioligand

concentration to use for inhibition binding assays. Upon approval, the saturation binding curve is immediately available in approved membrane pellet section with a unique timestamp associated with each batch of membrane preparation. Technicians make aliquots accordingly so that each aliquot is enough for one binding assay plate at the decided concentration of radioligand. Aliquots are stored in 1.5 ml eppendorf tubes at -80°C until their use at the specified concentration of radioligand and one aliquot per plate.

**1.6.1.2. Primary binding assay result analysis.** Upon completion of primary binding assays, technicians upload raw results in Excel spreadsheets directly into the PDSP database via the primary binding assay reporting menu. When uploading primary binding results, technicians must identify plates by barcodes and match those generated by the Hamilton STAR liquid handling system when the drug plates were made. A designated PDSP administrator double checks the plate identity and sample order before making the results available online for reviewing. The PDSP database is programmed to calculate the percentage inhibition for each assay plate with total binding (with buffer) as 0% inhibition and nonspecific binding (in the presence of 10  $\mu$ M of reference compound) as 100% inhibition. It also calculates an average value from 4 replicates for each sample. The PDSP database automatically marks those entries with 50% or higher inhibition for secondary binding assays; also highlights those with variances greater than 20% among the quadruplicate determinations for further inspection.

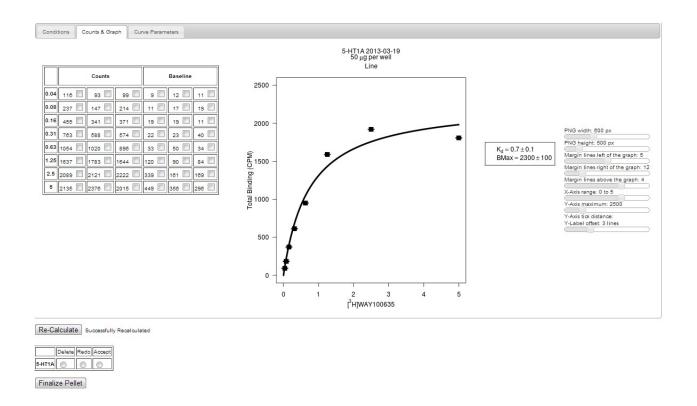


|         | nding approval: | C                                             | T          |
|---------|-----------------|-----------------------------------------------|------------|
| PlateID | Receptor        | Compounds                                     | Technician |
| 2336    | BZP Rat Brain S | ite 90001                                     | rwh        |
| 2871    | 5-ht5a          | 1, 2, 3, 4, 5, 6, 90001                       | sal        |
| 4345    | DAT             | 27103, 27266, 27267, 27101, 27364, 27365      | jfw        |
| 4896    | DAT             | 26610, 26611, 26614, 26615, 26616, 26617, 266 | 18 ifw     |

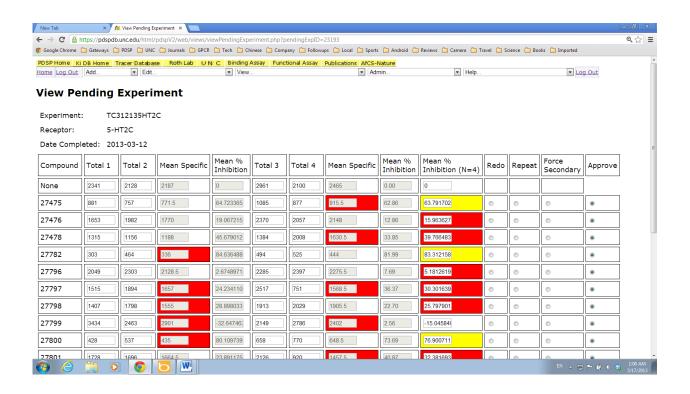
**Figure 4**. Representative pending lists for Saturation binding (Top), Primary binding (Middle), and Secondary binding (bottom) results. When binding assay results are reported and uploaded into the PDSP database, they are placed in separate pending lists.

Alternatively, compounds with negative inhibition (more binding in the presence of test compound) by over 20% are also highlighted for inspection. For any compound, there are four options available: "Redo" would delete the data from database and put the compound back on the "scheduled" list; "Repeat" would accept the results and put the compound back on the "scheduled" list for a repeat; "Force Secondary" would accept the primary results and add the compound on the "scheduled" list for secondary assays, even if the primary inhibitory percentage is less than 50%; "Approve" would accept the results, and database puts the compound on secondary "schedule" list if primary inhibition is over 50%. Either "Repeat", or "Force Secondary", or "Approve" immediately makes primary binding results available online to investigators. A representative screen capture (Figure 6) shows a reviewing screen for primary binding assay results.

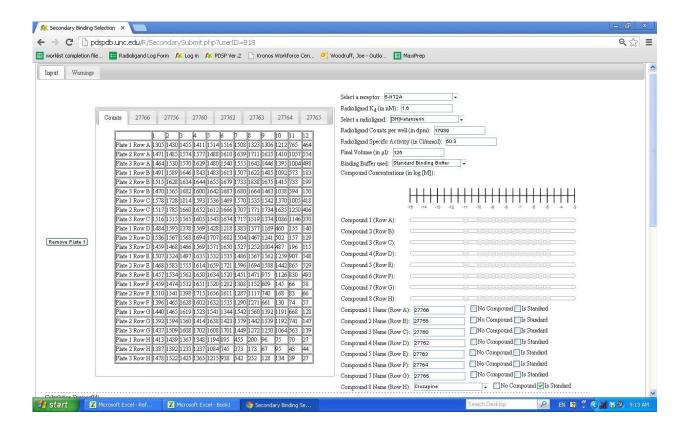
**1.6.1.3.** Secondary binding assay result analysis. Upon completion of secondary binding results, technicians can upload raw results in Excel spreadsheets directly into the PDSP database via the secondary binding assay reporting menu. Differently from primary binding results, the PDSP database analysis tools can accept two types of 96-well drug plate layouts as indicated in **Figures 2a and 2b**, either manually made or made by the Hamilton STAR®. When uploading and submitting secondary binding results, technicians must match drug plate maps and barcodes with those generated by the Hamilton STAR® liquid handling system when the drug plates were made. They also need to chose buffers, radioligand identity, and reference compounds from pull-down menus and enter the total radioligand activity (dpm), specific activity, and K<sub>d</sub> values (from saturation binding assay, see above) for the radioligand; the latter values will be used by the PDSP database to calculate the radioligand concentration used for the assay and to convert IC<sub>50</sub> to K<sub>i</sub> values. A representative screen capture (**Figure 7**) is shown below as technicians are uploading secondary binding results for submission. Technicians can view and examine the preliminary curves per plate or individually before submission.


After secondary binding results are submitted, the PDSP database treats results from 3 replicates of 96-well plates as a single file, assigns it a serial number with extra information such as receptor identity and PDSP compound numbers, and places the results in a pending list for review (**Figure 4**).

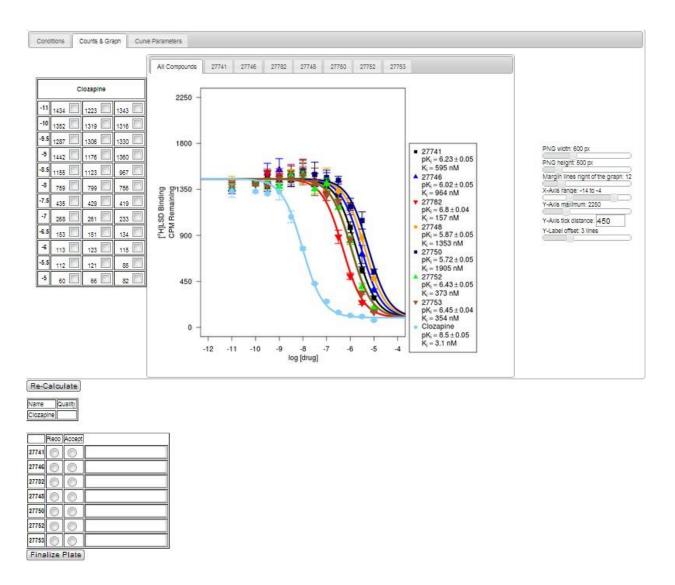
When PDSP administrators review and analyze the results for approval by clicking on any set of results in the pending list, the PDSP database will parse the uploaded file, and generate an editable table along with a preliminary graph for the purpose of analysis (Figure 8). Clicking on individual PDSP compounds leads to a new screen (Figure 9) showing a curve of the selected compound along with the reference curve. The raw data for both the selected compound and the reference are shown in tables at left. The PDSP database is also programmed to run a Robust regression and Outlier removal (ROUT) algorithm to identify and highlight potential outliers. PDSP administrators can either exclude or include the potential outliers when reviewing each data set. The raw data tables are also editable and allow for excluding points that are known to be in error, e.g., when a mistake is noticed in pipetting radioligand or membrane by a technician.


As an internal control, each secondary binding assay contains a reference dose-response curve, also in triplicate. The reference  $K_i$  value is automatically compared with its historical average value and/or that in our  $K_i$  database. If the reference  $K_i$  is larger than 3 fold different than its historical average value, the entire data set is flagged for further inspection. Senior PDSP scientists work with technicians to determine underlying causes and arrive at solutions. Typically, the secondary binding assay is repeated or the old reference stock is replaced with a fresh one, if the same reference has a low  $K_i$  value in multiple data sets.

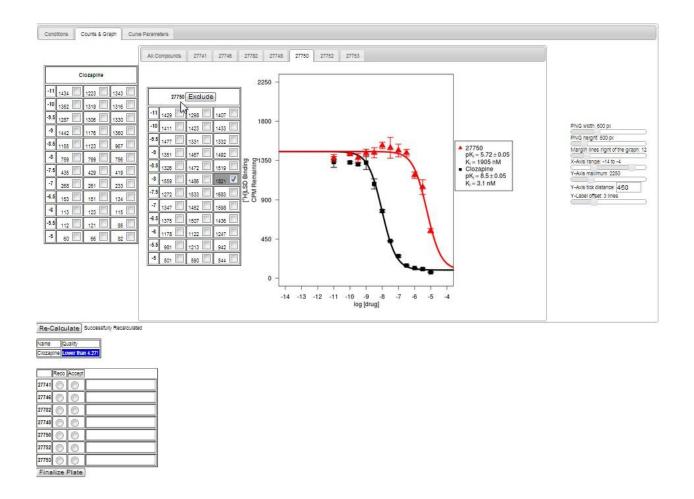
Each curve has its K<sub>i</sub> value listed at the right side and can be marked as either "Redo" or "Accept". If a curve is marked as "Accept", a new graph is generated for the PDSP compound, together with a reference curve and the status of the assay is flagged as "completed"; the result is then immediately available online to the investigator. Otherwise, "Redo" puts the compound back on to PDSP "scheduled" list. When an assay is approved, the PDSP database checks whether that compound has been previously tested at the same receptor. If so, database compares the results and generates a warning email if it finds that one K<sub>i</sub> value is at least 4x different (0.6 log unit) from another one. All the secondary assays with the same compound will then be put into the "Experiments under review" list. PDSP administrators will review and decide what to do next with the compounds. Options include (1) one more repeat with the same stock; (2) one more repeat with a fresh stock; (3) approval


with no more action since lowest K<sub>i</sub> value could be 4x away from highest K<sub>i</sub> value, but they are less than 3x away from mean value. If the PDSP database has multiple accepted entries for the same compound, the database will calculate an average from all previous repeats. If a compound shows allosteric potentiation in radioligand binding assays, the result is usually extracted and analyzed separately using Prism v5.0 (See representative figures for 5-HT<sub>1E</sub> secondary binding below).




**Figure 5**. A representative screen capture showing the saturation binding result reviewing process. Both total and nonspecific binding (cpm/well) are shown in the tables on the left. Specific binding is fitted to a hypobolic curve to determine  $B_{max}$  (cpm/well) and  $K_d$  (nM); both values are listed to the right of the curve. The pellet information is listed on top of the figure, showing that this is a 5-HT<sub>1A</sub> membrane pellet, made from a stable line, assayed at 50 µg/well protein on March 19, 2013.




**Figure 6**. A representative screen capture showing a reviewing screen of primary binding assay results. The barcoded plate is for 5-HT<sub>2B</sub> binding assays carried out on March 12, 2013. Total binding is shown in the top row and PDSP compounds are shown below. Nonspecific binding is at the bottom of the screen and not shown in the figure. Highlighted in yellow are the the samples with more than 50% inhibition; these samples will be tagged for secondary binding assays automatically. Highlighted in red are samples with more 20% variation among the 4 replicates. There are four options for each compound: "Redo", "Repeat", "Force Secondary", and "Approve", as indicated at the right side of the screen capture.



**Figure 7**. A representative screen capture showing the final stage in an actual secondary binding result submission. On the left, one complete set of raw data are pooled together from 3 96-well plates (Plate 7, Plate 8, and Plate 9) and organized from Rows A to G from top to bottom with PDSP compound # showing at the top of the table. On the upper right, detailed information for the binding assay is shown, including target receptor identity (5-HT<sub>2A</sub> receptor in this case),  $K_d$  value (1.6 nM) for the radioligand [ $^3$ H]-ketanserin, total radioactivity (17939 dpm) added to each well, specific activity of the radioligand (50.3 Ci/mmol), and final volume of the assay (125  $\mu$ I/well) in standard binding buffer. On the lower right, detailed information on the tested compounds (PDSP numbered compounds and reference with corresponding concentrations) is are shown. The concentrations for each compound are set at default values, but can be changed individually by sliding the corresponding bar button, if necessary.



**Figure 8**. A screen capture showing a representative overview of a set of secondary binding results. On the left, detailed counts (cpm/well) for the reference compounds are shown in a table. In the middle, up to 8 curves are shown on the same graph with pre-determined color scheme with PDSP numbers on top of the graph (one on each tab) and corresponding pK<sub>i</sub> and K<sub>i</sub> values on the right. Clicking on any PDSP number brings up a graph showing the selected compound and reference, see Figure 9.



**Figure 9**. A screen capture showing a representative reviewing process. This screen shows when a PDSP compound is clicked on its tab in **Figure 8**. On the right, detailed counts (cpm/well) for both reference compound and the selected PDSP compound are shown in corresponding tables. One potential outlier has been highlighted (in dark gray with a checkmark " $\sqrt{}$ ") by the PDSP database using a robust outlier identification algorithm. In the middle, the selected compound is plotted side by side with the reference compound, with corresponding pK<sub>i</sub> and K<sub>i</sub> values listed on the right. At the lower left corner, each compound can be marked either "Redo" or "Accept" and there is a box for a brief note.

- **1.6.2. Binding assay result analysis using Prism v5.0:** Binding assay results are also analyzed in Prism v5.0, if necessary, using Prism built-in functions for corresponding assay types. The following sections provide detailed procedures for binding assay data analysis.
- **1.6.2.1. Saturation binding result analysis**. For saturation binding results, total binding and nonspecific binding results are analyzed in Prism v5.0 by fitting results to the following equations to determine  $B_{\text{max}}$  and  $K_d$  values. To do this, total binding values in cpm must be entered in column A and nonspecific binding values in cpm must be entered in column B, corresponding to concentrations of the free radioligand.

Nonspecific binding = 
$$NS * X + Background$$
  
Total binding = Nonspecific binding +  $\frac{B_{max} * X}{(X + K_d)}$ 

in which "Nonspecific binding" and "Total binding" are measured radioactivity (cpm per well) in the absence and presence of 10  $\mu$ M reference compound, respectively, at corresponding concentration [X] in nM.  $B_{max}$  is receptor expression level in cpm/well or fmol/mg protein;  $K_d$  is the equilibrium binding affinity, corresponding to the radioligand concentration at which point 50% of  $B_{max}$  is bound to the radioligand; NS and Background are two fitting values for nonspecific binding and background counts.

**1.6.2.2. Primary binding result analysis**. For primary binding results, non-specific binding in the presence of  $10 \mu M$  of an appropriate reference compound is set as 100% inhibition; total binding in the absence of test compound or reference compound is set as 0% inhibition. The radioactivity in the presence of test compound is calculated with the following equation and expressed as a percentage inhibition:

% Inhibition = 
$$100 - \frac{Sample\ cpm - Nonspecific\ cpm}{Total\ cpm - nonspecific\ cpm} \times 100$$

**1.6.2.3. Secondary binding result analysis**. For secondary binding results, counts (cpm/well) are pooled and fitted to a three-parameter logistic function for competition binding in Prism v 5.0 to determine IC<sub>50</sub> values,

$$Y = Bottom + \frac{(Top - Bottom)}{1 + 10^{X - LogIC_{50}}}$$

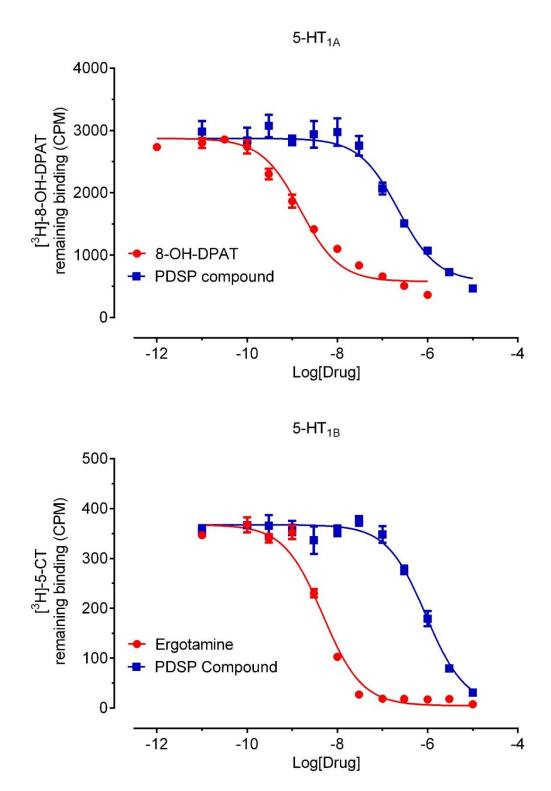
in which  $\mathbf{Y}$  is the total binding in the presence of corresponding concentration of test compound ( $\mathbf{X}$ ); **Top** and **Bottom** are the total and nonspecific binding in the absence and presence of 10  $\mu$ M reference antagonist; **IC**<sub>50</sub> is the concentration at which 50% observed binding was inhibited and is converted to  $K_i$  according to the Cheng-Prusoff equation (7),

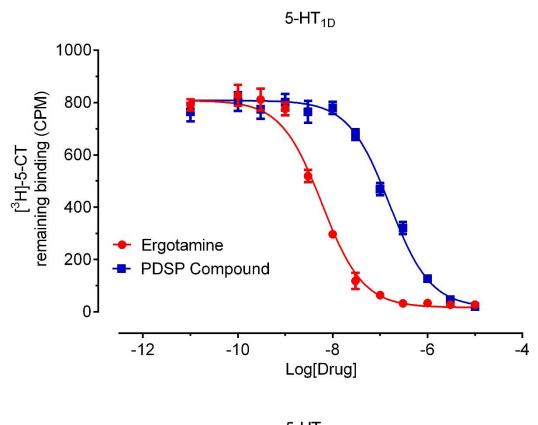
$$K_i = \frac{IC_{50}}{1 + \frac{L}{K_d}} \text{ or } LogK_i = LogIC_{50} - Log(1 + \frac{L}{K_d})$$

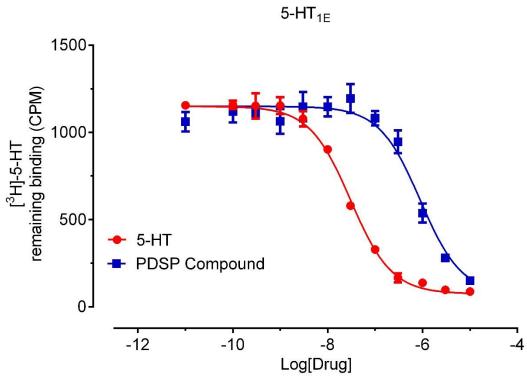
in which  $\mathbf{L}$  is the radioligand concentration used in the competition binding assay;  $\mathbf{K}_{d}$  is the radioligand equilibrium binding affinity determined in above saturation binding assays. In the curve-fitting analysis, top and bottom values are shared among all binding curves from the same plate if necessary.

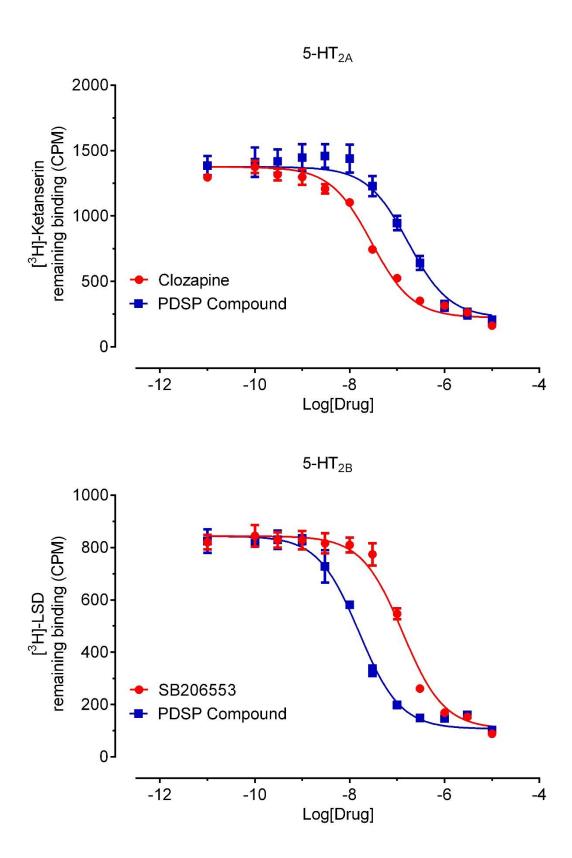
### 1.7. Tables of binding assay conditions and representative figures

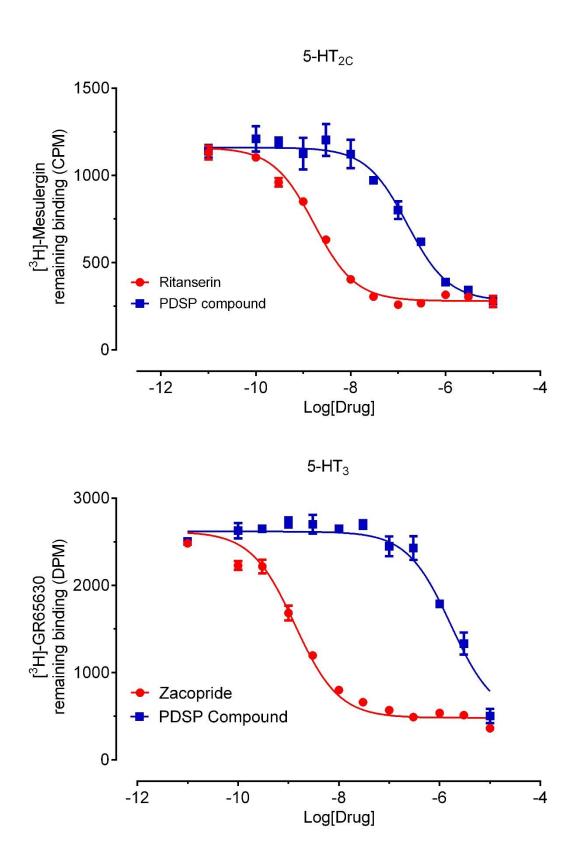
**Table 2**. 5-HT receptors, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. BB for binding buffer; WB for wash buffer. Historical reference K<sub>i</sub> values from the last 2 years are also listed.

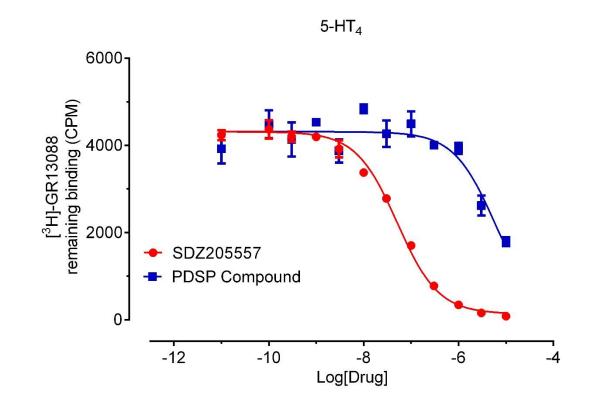

# 5-HT receptors

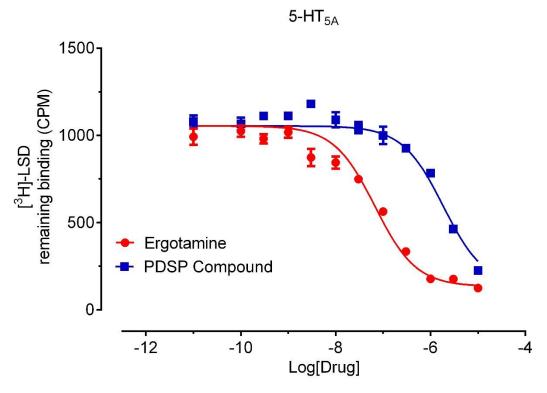

Standard BB (SBB): 50 mM Tris HCl, 10 mM MgCl $_2$ , 0.1 mM EDTA, pH 7.4, RT

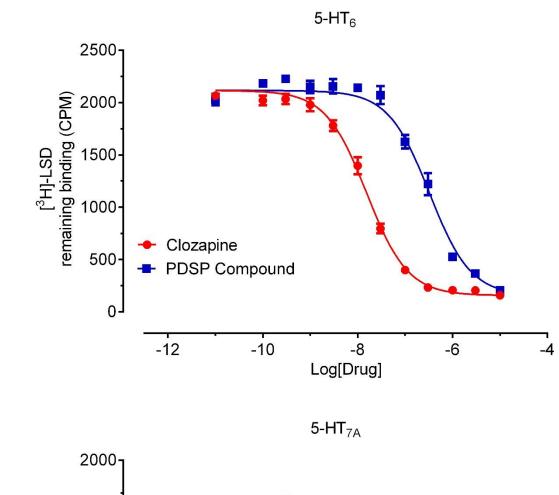

Standard WB (SWB): 50 mM Tris HCl, pH 7.4, cold

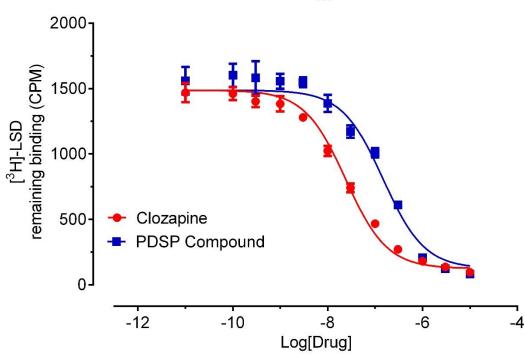

| Target             | Radioligand                                 | Radioligand | Reference Ligand                            | Literature |
|--------------------|---------------------------------------------|-------------|---------------------------------------------|------------|
|                    | pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | used (nM)   | pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) |            |
| 5-HT <sub>1A</sub> | [ <sup>3</sup> H]-Way100635                 | 0.5 – 1.0   | 8-OH-DPAT                                   | (8)        |
|                    | 9.30 ± 0.04 (0.50)                          |             | 9.18 ± 0.02 (0.66)                          |            |
| 5-HT <sub>1B</sub> | [ <sup>3</sup> H]5-CT                       | 0.6 – 1.5   | Ergotamine                                  | (9, 10)    |
|                    | 9.06 ± 0.09 (0.87)                          |             | 8.84 ± 0.03 (1.44)                          |            |
| 5-HT <sub>1D</sub> | [ <sup>3</sup> H]5-CT                       | 1.0 – 2.0   | Ergotamine                                  | (9, 10)    |
|                    | 9.06 ± 0.06 (0.86)                          |             | 8.32 ± 0.02 (4.83)                          |            |
| 5-HT <sub>1E</sub> | [ <sup>3</sup> H]5-HT                       | 2.1 – 5.0   | 5-HT                                        | (11–13)    |
|                    | 8.42 ± 0.06 (3.82)                          |             | 8.05 ± 0.03 (8.82)                          |            |
| 5-HT <sub>1F</sub> |                                             |             |                                             |            |
| 5-HT <sub>2A</sub> | [³H]-Ketanserin                             | 1.2 – 2.4   | Clozapine                                   | (14–16)    |
|                    | 8.92 ± 0.04 (1.20)                          |             | 8.23 ± 0.01 (5.91)                          |            |
| 5-HT <sub>2B</sub> | [³H]-LSD                                    | 1.0 – 2.0   | SB206553                                    | (17–19)    |
|                    | 8.93 ± 0.03 (1.19)                          |             | 7.84 ± 0.01 (14.39)                         |            |
| 5-HT <sub>2C</sub> | [ <sup>3</sup> H]-Mesulergine               | 1.0 – 2.5   | Ritanserin                                  | (17, 20)   |
|                    | 5.85 ± 0.06 (2.66)                          |             | 8.84 ± 0.02 (1.44)                          |            |
| 5-HT <sub>3</sub>  | [ <sup>3</sup> H]GR65630                    | 1.0 – 2.0   | Zacopride                                   | (21, 22)   |
|                    | 8.46 ± 0.14 (3.48)                          |             | 9.23 ± 0.02 (0.58)                          |            |
| 5-HT <sub>4</sub>  | [3H]GR113808                                | 0.5 - 2.0   | SDZ205557                                   | (23–27)    |
|                    | 8.66 ± 0.17 (2.19)                          |             | 7.94 ± 0.09 (11.44)                         |            |
| 5-HT <sub>5A</sub> | [³H]-LSD                                    | 2.0 - 3.3   | Ergotamine                                  | (28, 29)   |
|                    | 8.72 ± 0.03 (1.91)                          |             | 7.61 ± 0.03 (24.60)                         |            |
| 5-HT <sub>6</sub>  | [³H]-LSD                                    | 2.0 – 4.0   | Clozapine                                   | (30)       |
|                    | 8.37 ± 0.04 (4.27)                          |             | 8.28 ± 0.02 (5.27)                          |            |
| 5-HT <sub>7A</sub> | [³H]-LSD                                    | 5.0 – 6.0   | Clozapine                                   | (31)       |
|                    | 8.13 ± 0.06 (7.48)                          |             | 7.99 ± 0.02 (10.33)                         |            |


Figure 10. Representative competition binding curves with 5-HT receptors







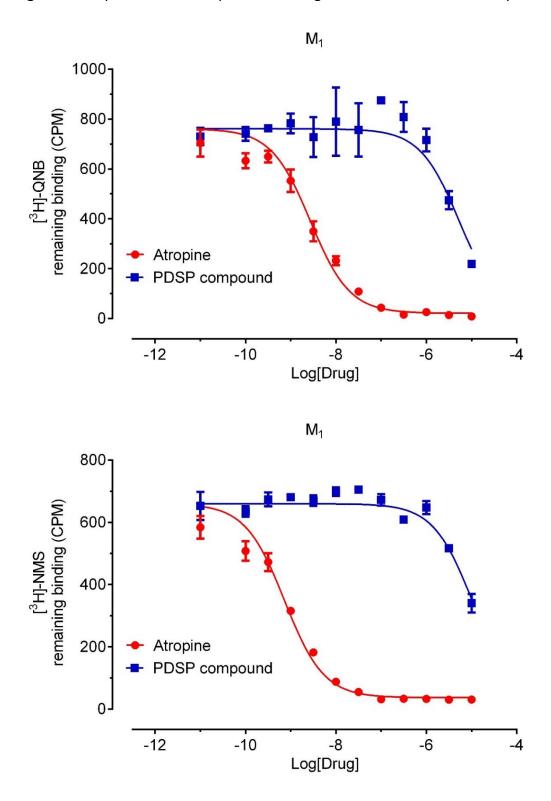


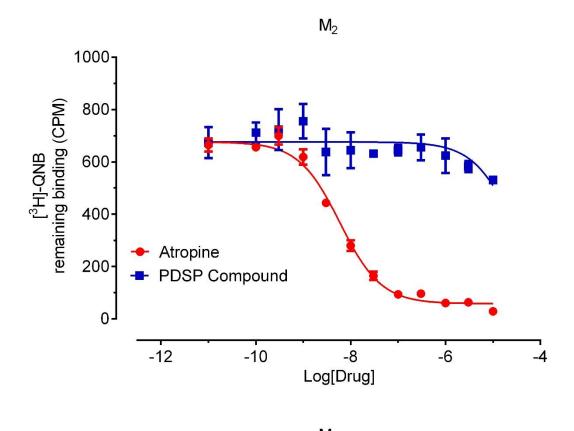


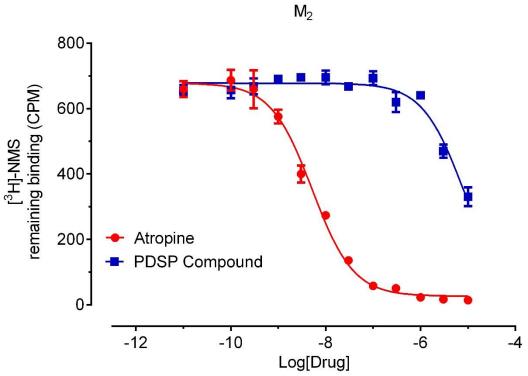


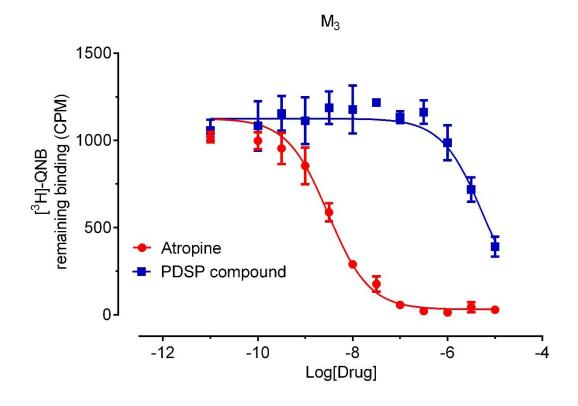

**Table 3**. Muscarinic acetylcholine receptors, radioligands and corresponding  $K_d$  values, reference compounds, and buffers for primary and secondary radioligand binding assays. BB for binding buffer; WB for wash buffer. Historical reference  $K_i$  values from over last years are also included.

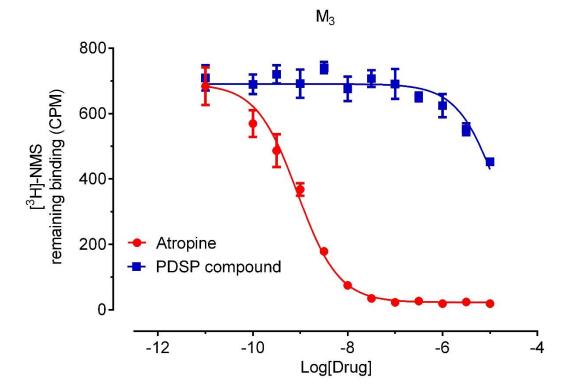
## Muscarinic acetylcholine receptors

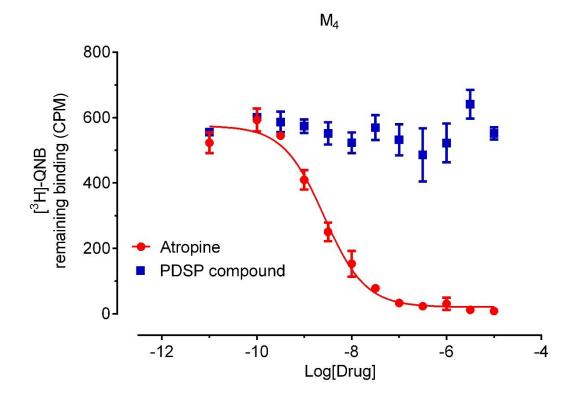

Muscarinic BB (MBB) #1: 50 mM Tris HCl, pH 7.7, RT + SWB

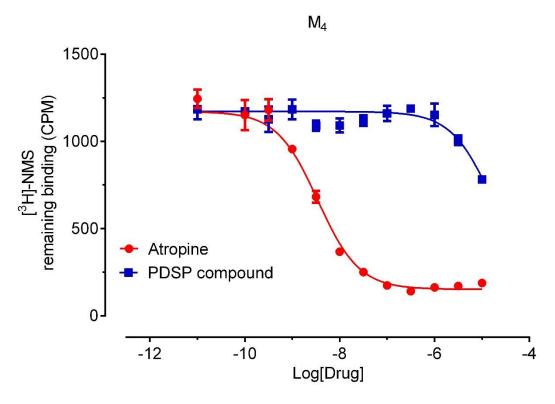

Muscarinic BB (MBB) #2: 25 mM Sodium Phosphate, 5 mM MgCl<sub>2</sub>, pH 7.4, RT (cold for washing)

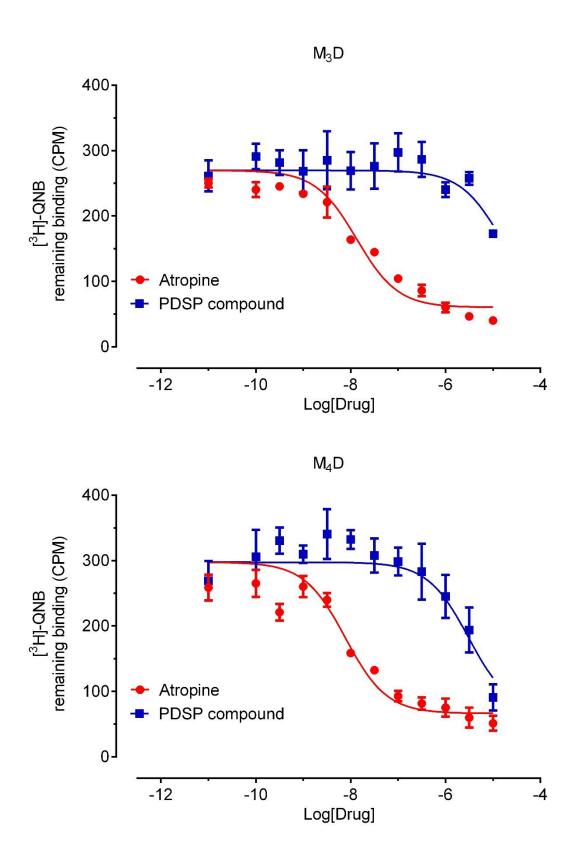

Muscarinic wash buffer #2: Same as muscarinic binding buffer #2, cold

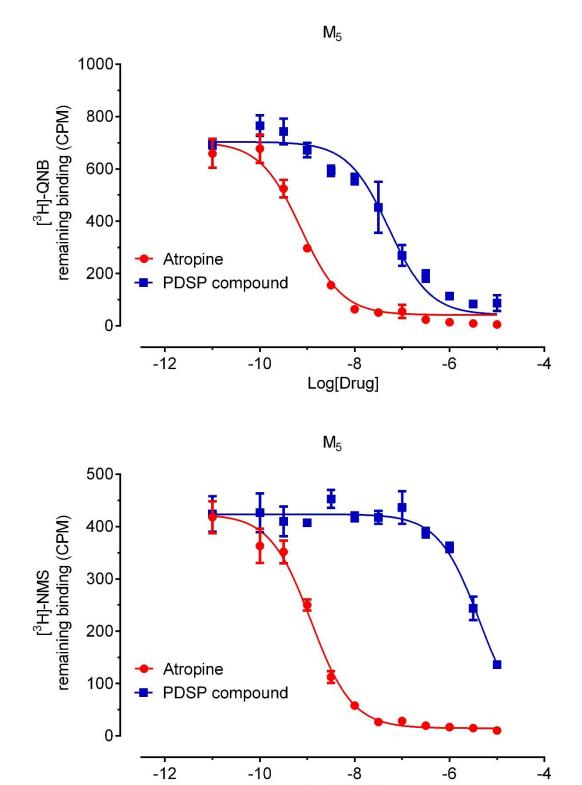

| Target           | Radioligand              | Radioligand | Reference Ligand                            | Literature |
|------------------|--------------------------|-------------|---------------------------------------------|------------|
|                  | $pK_d \pm SEM (K_d, nM)$ | used (nM)   | pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) |            |
| M <sub>1</sub>   | [³H]-QNB                 | 0.3 – 1.2   | Atropine                                    | (32, 33)   |
|                  | 9.21 ± 0.18 (0.62)       |             | 8.92 ± 0.03 (1.21)                          |            |
| M <sub>1</sub>   | [³H]-NMS                 | 0.5 – 0.9   | Atropine                                    | (34, 35)   |
|                  | 9.26 ± 0.21 (0.54)       |             | 8.86 ± 0.08 (1.39)                          |            |
| M <sub>2</sub>   | [³H]-QNB                 | 0.2 - 1.0   | Atropine                                    | (32)       |
|                  | 9.57 ± 0.05 (0.27)       |             | 8.63 ± 0.03 (2.36)                          |            |
| M <sub>2</sub>   | [³H]-NMS                 | 0.2 - 1.0   | Atropine                                    | (34)       |
|                  | 9.67 ± 0.10 (0.21)       |             | 9.11 ± 0.34 (0.77)                          |            |
| M <sub>3</sub>   | [³H]-QNB                 | 0.3 – 1.0   | Atropine                                    | (32)       |
|                  | 9.37 ± 0.06 (0.43)       |             | 9.30 ± 0.03 (0.50)                          |            |
| M <sub>3</sub>   | [³H]-NMS                 | 0.3 – 1.0   | Atropine                                    | (34)       |
|                  | 9.53 ± 0.08 (0.30)       |             | 9.19 ± 0.12 (0.64)                          |            |
| M <sub>3</sub> D | [³H]-QNB                 | 0.5 – 1.0   | Atropine                                    | (36, 37)   |
|                  | 9.13 ± 0.19 (0.74)       |             | 8.30 ± 0.12 (4.97)                          |            |
| M <sub>4</sub>   | [³H]-QNB                 | 0.3 – 1.0   | Atropine                                    | (32, 33)   |
|                  | 9.64 ± 0.06 (0.23)       |             | 9.25 ± 0.04 (0.56)                          |            |
| M <sub>4</sub>   | [³H]-NMS                 | 0.3-1.0     | Atropine                                    | (33, 34)   |
|                  | 9.72 ± 0.11 (0.19)       |             | 8.89 ± 0.07 (1.28)                          |            |
| M <sub>4</sub> D | [³H]-QNB                 | 1.0 – 2.5   | Atropine                                    | (37, 38)   |
|                  | 8.74 ± 0.14 (1.80)       |             | 8.46 ± 0.08 (3.47)                          |            |
| M <sub>5</sub>   | [³H]-QNB                 | 0.2 - 1.0   | Atropine                                    | (34)       |
|                  | 9.31 ± 0.06 (0.49)       |             | 9.26 ± 0.02 (0.55)                          |            |
| M <sub>5</sub>   | [³H]-NMS                 | 0.2 – 1.0   | Atropine                                    | (34, 39)   |
|                  | 9.49 ± 0.05 (0.32)       |             | 8.99 ± 0.08 (1.03)                          |            |


Figure 11. Representative competition binding curves with muscarinic acetylcholine receptors









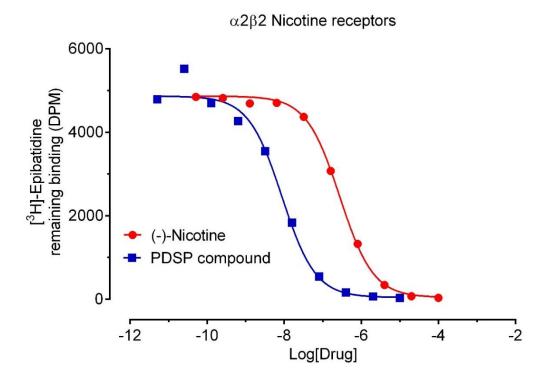


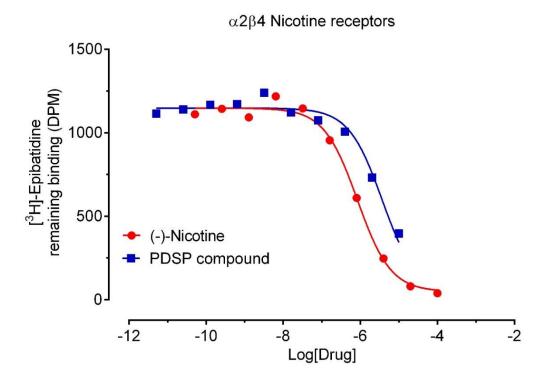


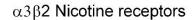

Log[Drug]

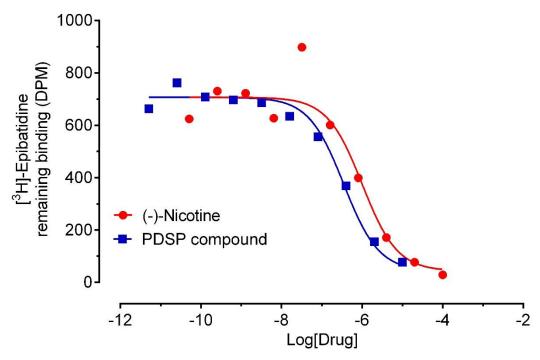
**Table 4. Radioligand binding assays for nAChRs.** Primary binding assays used 100 pM of [ $^{3}$ H]-epibatidine and secondary binding assays used 0.5 -2.3 nM [ $^{3}$ H]-epibatidine. Historical reference  $K_{i}$  values from last > 2 years are also included for quality control.

Nicotinic acetylcholine receptors (nAChRs)

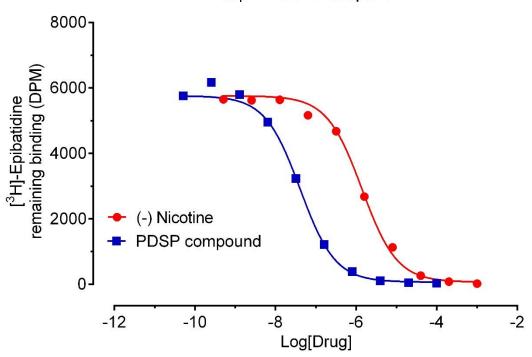

Nicotinic acetylcholine receptor binding buffer: 50 mM Tris HCl, pH 7.4, RT  $\,$ 

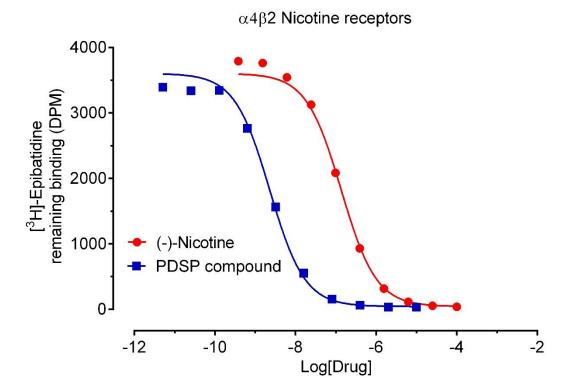

Standard wash buffer: 50 mM Tris HCl, pH 7.4, cold

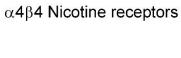

| Target          | Radioligand<br>Avg K <sub>d</sub> (nM) | Radioligand used (nM) | Reference<br>pK <sub>i</sub> ± SEM (K <sub>i</sub> ,nM) | Literature |
|-----------------|----------------------------------------|-----------------------|---------------------------------------------------------|------------|
| α2β2            | [ <sup>3</sup> H]-Epibatidine          | 0.46 - 0.53           | Nicotine                                                | (5, 6)     |
|                 | 0.010                                  |                       | 8.25 ± 0.06 (5.60)                                      |            |
| α2β4            | [ <sup>3</sup> H]-Epibatidine          | 0.46 - 0.53           | Nicotine                                                |            |
|                 | 0.040                                  |                       | 7.12 ± 0.03 (76.5)                                      |            |
| α3β2            | [ <sup>3</sup> H]-Epibatidine          | 0.46 - 0.53           | Nicotine                                                |            |
|                 | 0.015                                  |                       | 8.12 ± 0.02 (7.59)                                      |            |
| α3β4            | [ <sup>3</sup> H]-Epibatidine          | 0.46 - 0.53           | Nicotine                                                |            |
|                 | 0.080                                  |                       | 6.51 ± 0.03 (311)                                       |            |
| α4β2            | [ <sup>3</sup> H]-Epibatidine          | 0.46 - 0.53           | Nicotine                                                |            |
|                 | 0.030                                  |                       | 8.18 ± 0.04 (6.65)                                      |            |
| α4β2*           | [ <sup>3</sup> H]-Epibatidine          | 0.46 - 0.53           | Nicotine                                                |            |
|                 | 0.050                                  |                       | 8.04 ± 0.03 (9.03)                                      |            |
| α4β4            | [ <sup>3</sup> H]-Epibatidine          | 0.46 - 0.53           | Nicotine                                                |            |
|                 | 0.080                                  |                       | 7.56 ± 0.02 (27.5)                                      |            |
| $\alpha$ 7, rat | [ <sup>3</sup> H]-Epibatidine          | 1.79 – 2.31           | Nicotine                                                |            |
|                 | 1.36                                   |                       | 6.50 ± 0.05 (316)                                       |            |
| Cortex, rat     | [ <sup>3</sup> H]-Epibatidine          | 0.46 - 0.53           | Nicotine                                                |            |
|                 | 0.04                                   |                       | 8.20 ± 0.03 (6.27)                                      |            |

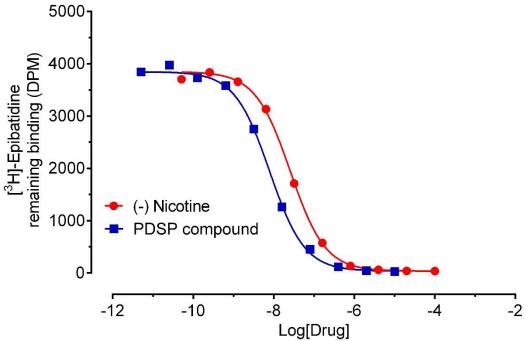

<sup>\*</sup> Rat forebrain

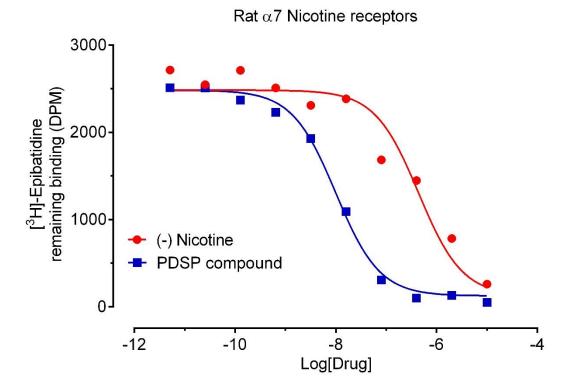
**Figure 12**. Representative competition binding curves with nicotinic acetylcholine receptors

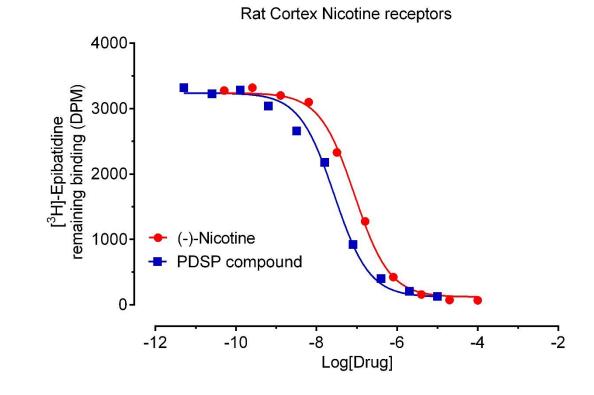




 $\alpha 3 \beta 4$  Nicotine receptors





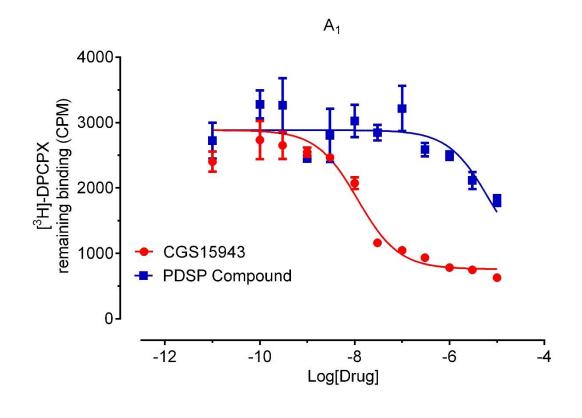


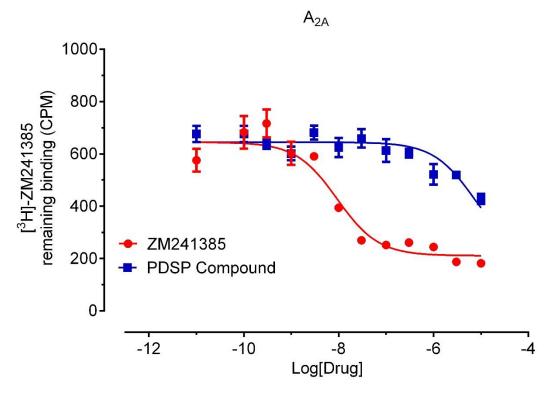







**Table 5**. Adenosine receptors, radioligand and corresponding concentrations, reference compound, and buffers for primary and secondary radioligand binding assays. Historical reference  $K_i$  values from the last > 2 years are also included for quality control.


### Adenosine receptors


Adenosine Binding Buffer: 50 mM Tris HCl, 1U/ml adenosine deaminase, pH 7.4, RT

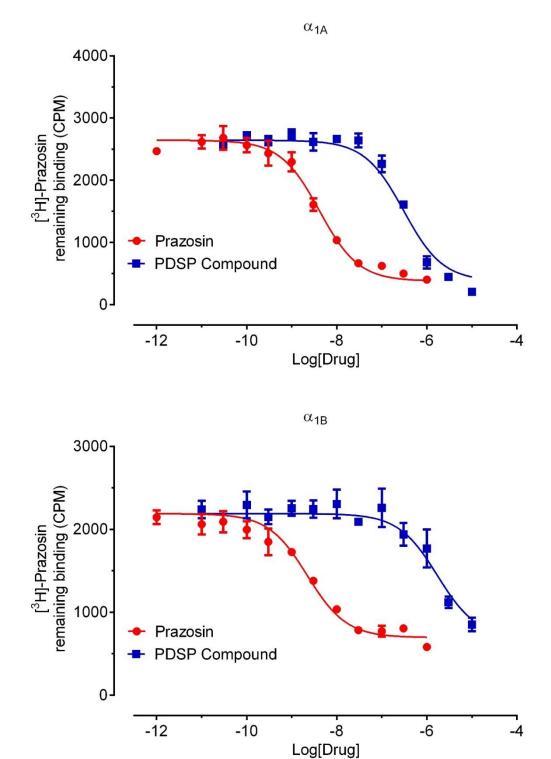
Standard Washing Buffer: 50 mM Tris HCl, pH 7.4, cold

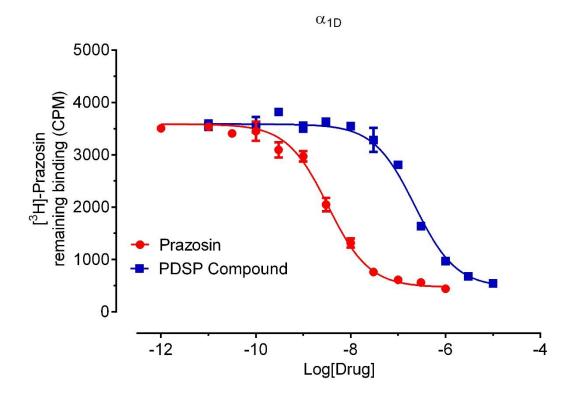
| Target          | Radioligand<br>pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | Radioligand<br>used (nM) | Reference Ligand pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | Literature |  |
|-----------------|------------------------------------------------------------|--------------------------|--------------------------------------------------------------|------------|--|
| A <sub>1</sub>  | [ <sup>3</sup> H] DPCPX                                    | 5.0                      | CGS15943                                                     | (40, 41)   |  |
|                 | 8.31 ± 0.16 (4.95)                                         |                          | 7.88 ± 0.26 (13.3)                                           |            |  |
| A <sub>2A</sub> | [ <sup>3</sup> H] ZM241385                                 | 2.0 - 5.0                | ZM-241385                                                    | (42, 43)   |  |
|                 | 8.34 ± 0.20 (4.60)                                         |                          | 8.11 ± 0.19 (7.85)                                           |            |  |
|                 |                                                            |                          | NECA                                                         |            |  |
|                 |                                                            |                          | 6.24 ± 0.07 (575)                                            |            |  |
| A <sub>2B</sub> | Being developed                                            |                          |                                                              |            |  |
| A <sub>3</sub>  | Being developed                                            |                          |                                                              |            |  |

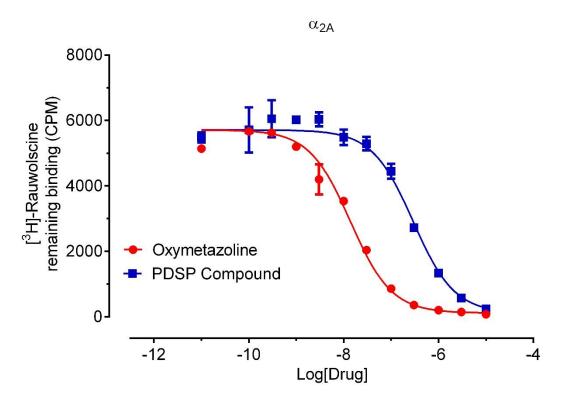
**Figure 13**. Representative competitive binding curves for adenosine receptors

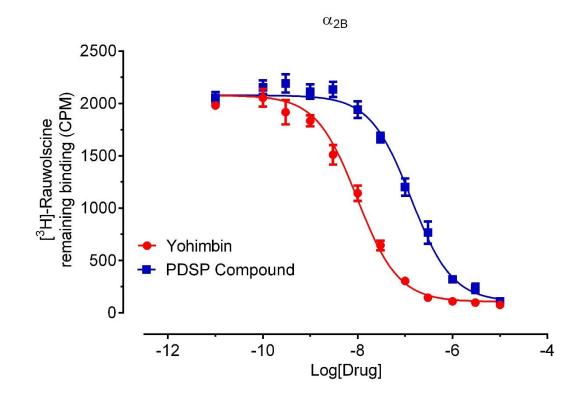


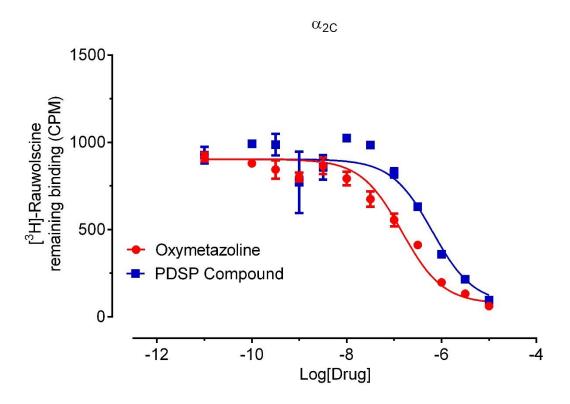


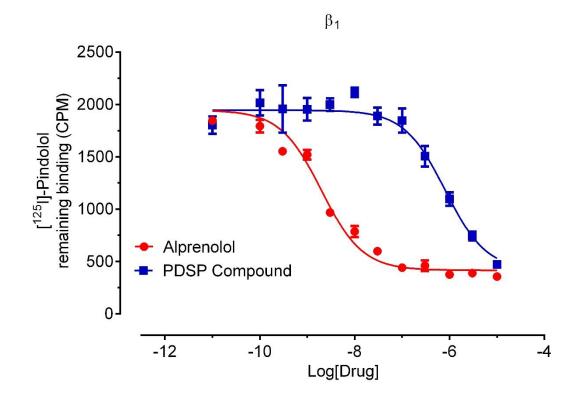

**Table 6**. Adrenergic receptors, radioligands and corresponding  $K_d$  values, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference  $K_i$  values from the last >2 years are also listed.

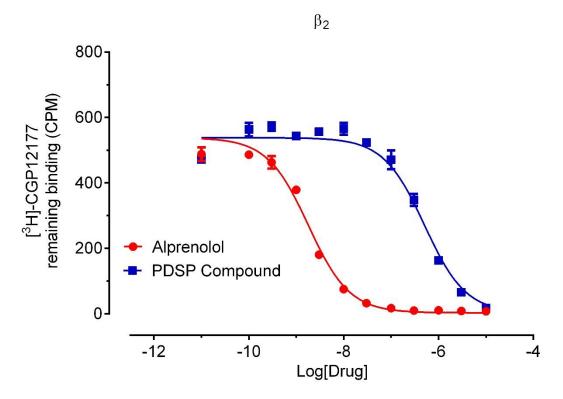

## Adrenergic receptors

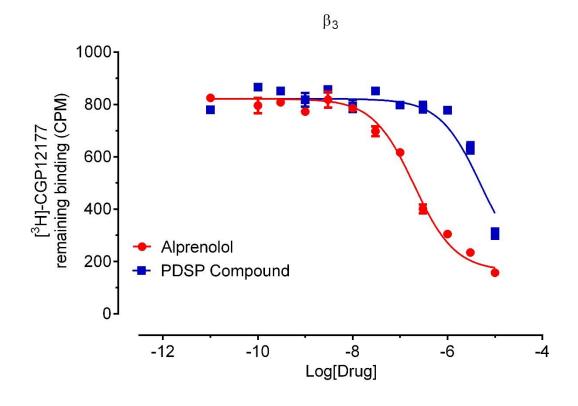

 $\alpha$ 1 Binding Buffer: 20 mM Tris HCl, 145 mM NaCl, pH 7.4, RT  $\alpha$ 2 Binding Buffer: 50 mM Tris HCl, 5 mM MgCl<sub>2</sub>, pH 7.7, RT  $\beta$ 3 Binding Buffer: 50 mM Tris HCl, 3 mM MgCl<sub>2</sub>, pH 7.7, RT Standard Wash Buffer: 50 mM Tris HCl, pH 7.4, cold

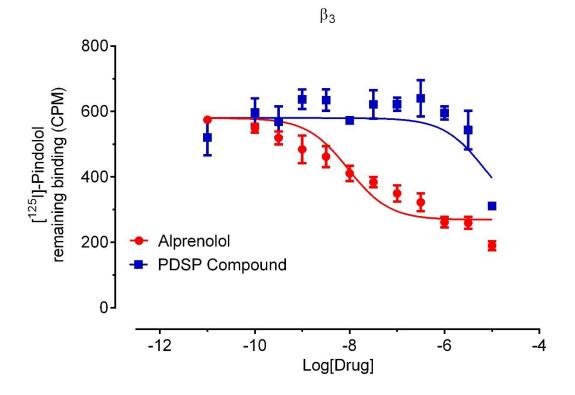

| Target                 | Radioligand                                 | Radioligand | Reference ligand                            | Literature |
|------------------------|---------------------------------------------|-------------|---------------------------------------------|------------|
|                        | pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | used (nM)   | pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) |            |
| α <sub>1A</sub>        | [ <sup>3</sup> H]-Prazosin                  | 0.2 - 1.0   | Prazosin                                    | (44, 45)   |
|                        | 9.36 ± 0.07 (0.43)                          |             | 9.16 ± 0.03 (0.70)                          |            |
| $\alpha_{\mathtt{1B}}$ | [ <sup>3</sup> H]-Prazosin                  | 0.3 – 1.0   | Prazosin                                    |            |
|                        | 9.23 ± 0.29 (0.58)                          |             | 9.05 ± 0.03 (0.88)                          |            |
| $lpha_{	exttt{1D}}$    | [ <sup>3</sup> H]-Prazosin                  | 0.3 – 1.0   | Prazosin                                    |            |
|                        | 9.21 ± 0.07 (0.62)                          |             | 9.20 ± 0.03 (0.63)                          |            |
| $\alpha_{2A}$          | [ <sup>3</sup> H]-Rauwolscine               | 1.0 – 3.0   | Oxymetazoline                               | (46–48)    |
|                        | 8.46 ± 0.16 (3.47)                          |             | 8.35 ± 0.02 (4.51)                          |            |
| $\alpha_{2B}$          | [ <sup>3</sup> H]-Rauwolscine               | 1.5 – 2.0   | Yohimbine                                   |            |
|                        | 8.74 ± 0.13 (1.81)                          |             | 8.24 ± 0.02 (5.81)                          |            |
| $\alpha_{2C}$          | [ <sup>3</sup> H]-Rauwolscine               | 0.5 – 1.0   | Oxymetazoline                               |            |
|                        | 9.02 ± 0.10 (0.96)                          |             | 7.38 ± 0.02 (41.6)                          |            |
| ß <sub>1</sub>         | [ <sup>125</sup> I]-Pindolol                | 0.1 – 0.2   | Alprenolol                                  | (49–52)    |
|                        | 10.06 ± 0.09 (0.10)                         |             | 8.73 ± 0.03 (1.85)                          |            |
| ß <sub>2</sub>         | [ <sup>3</sup> H]-CGP12177                  | 0.5 - 1.0   | Alprenolol                                  |            |
|                        | 9.15 ± 0.16 (0.71)                          |             | 8.79 ± 0.03 (1.61)                          |            |
| ß <sub>3</sub>         | [ <sup>3</sup> H]-CGP12177                  | 20          |                                             |            |
|                        | 7.50 ± 0.16 (31.8)                          |             |                                             |            |
| ß <sub>3</sub>         | [ <sup>125</sup> I]-Pindolol                | 0.2 - 0.5   | Alprenolol                                  |            |
|                        | 9.45 ± 0.15 (0.36)                          |             | 7.64 ± 0.03 (23.0)                          |            |


Figure 14. Representative competition binding curves with adrenergic receptors



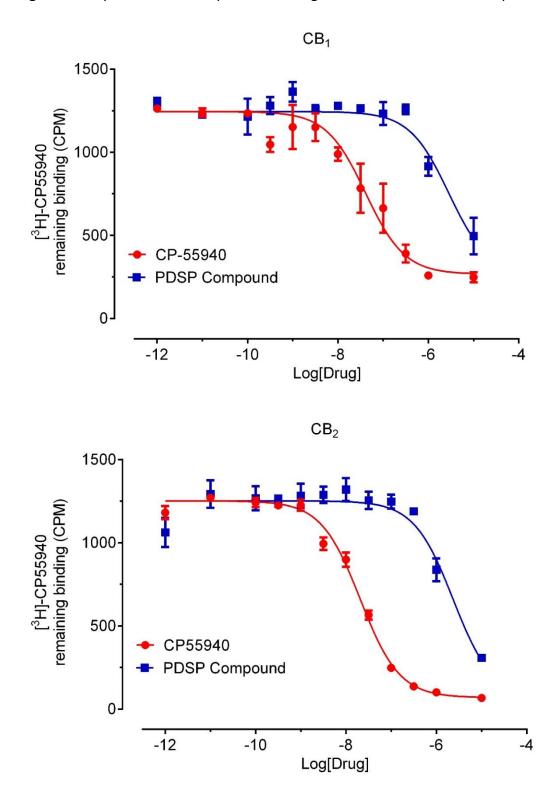












**Table 7**. Cannabinoid receptors, radioligand and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference K<sub>i</sub> values from the last >2 years are also included.

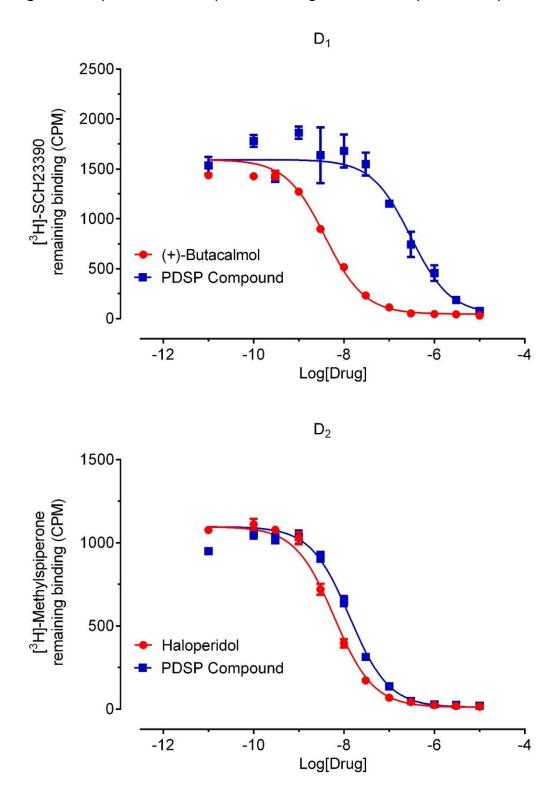
### Cannabinoid receptors

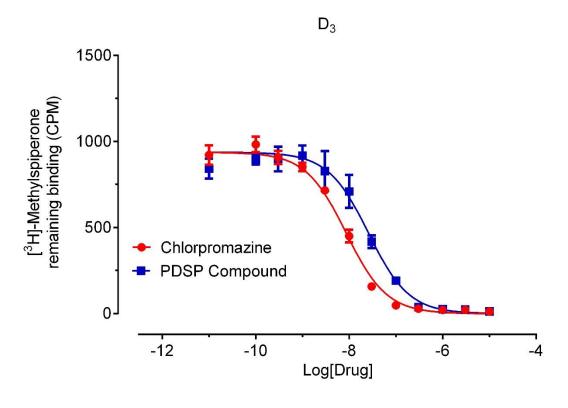
Cannabinoid Binding Buffer: 50 mM Tris HCl, 5 mM MgCl<sub>2</sub>, 1 mM EDTA, 1 mg/ml BSA, pH 7.4, RT Cannabinoid Wash Buffer: cannabinoid binding buffer + 1 mg/ml BSA, pH 7.4, cold

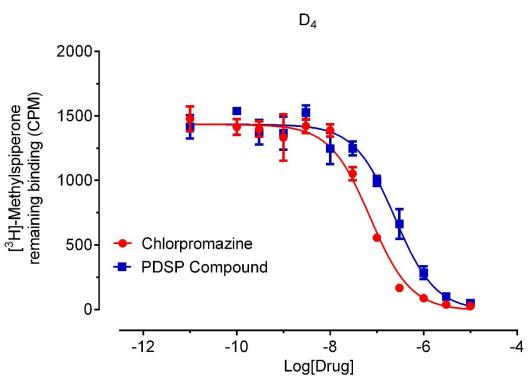
| Target          | Radioligand<br>pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | Radioligand<br>used (nM) | Reference Ligand pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) | Literature |
|-----------------|------------------------------------------------------------|--------------------------|--------------------------------------------------------------|------------|
| CB <sub>1</sub> | [ <sup>3</sup> H]-CP55940                                  | 0.5 - 2.0                | CP-55940                                                     | (53–55)    |
| (rat brain)     | 8.73 ± 0.22 (1.85)                                         |                          | 8.23 ± 0.05 (5.87)                                           |            |
| CB <sub>2</sub> | [ <sup>3</sup> H]-CP55940                                  | 1.0 - 3.0                | CP-55940                                                     |            |
|                 | 8.47 ± 0.11 (3.37)                                         |                          | 8.06 ± 0.05 (8.77)                                           |            |

**Figure 15**. Representative competitive binding curves for cannabinoid receptors.




**Table 8**. Dopamine receptors, radioligands and corresponding  $K_d$  values, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference  $K_i$  values from >2 years are also included.


# Dopamine receptors


Dopamine Binding Buffer: 50 mM HEPES, 50 mM NaCl, 5 mM MgCl<sub>2</sub>, 0.5 mM EDTA, pH 7.4, RT Standard Wash Buffer: 50 mM Tris HCl, pH 7.4, cold

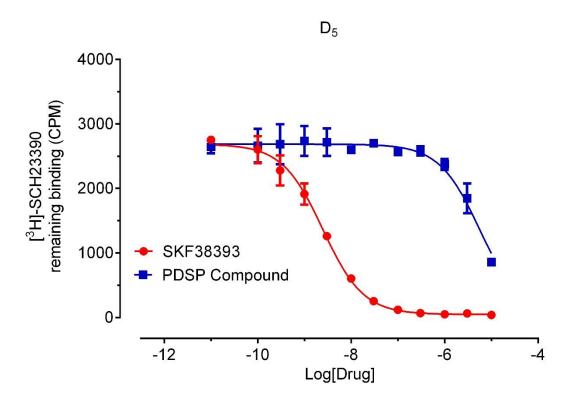

| Target         | Radioligand<br>pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | Radioligand used (nM) | Reference Ligand pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) | Literature |
|----------------|------------------------------------------------------------|-----------------------|--------------------------------------------------------------|------------|
| D <sub>1</sub> | [ <sup>3</sup> H]-SCH23390<br>9.13 ± 0.05 (0.74)           | 0.6 – 1.3             | (+)-Butaclamol<br>8.51 ± 0.02 (3.07)                         | (56)       |
| D <sub>2</sub> | [ <sup>3</sup> H]-N-methylspiperone<br>9.33 ± 0.06 (0.47)  | 0.4 – 1.0             | Haloperidol<br>8.15 ± 0.02 (7.15)                            | (57, 58)   |
| D <sub>3</sub> | [ <sup>3</sup> H]-N-methylspiperone<br>9.44 ± 0.09 (0.36)  | 0.5 – 1.8             | Chlorpromazine<br>7.99 ± 0.02 (10.30)                        |            |
| D <sub>4</sub> | [ <sup>3</sup> H]-N-methylspiperone<br>9.07 ± 0.06 (0.86)  | 0.6 – 1.7             | Chlorpromazine<br>7.49 ± 0.02 (32.62)                        |            |
| D <sub>5</sub> | [ <sup>3</sup> H]-SCH23390<br>8.69 ± 0.05 (2.03)           | 2.0 – 3.0             | SKF38393<br>8.59 ± 0.02 (2.59)                               | (59)       |

Figure 16. Representative competitive binding curves with Dopamine receptors.



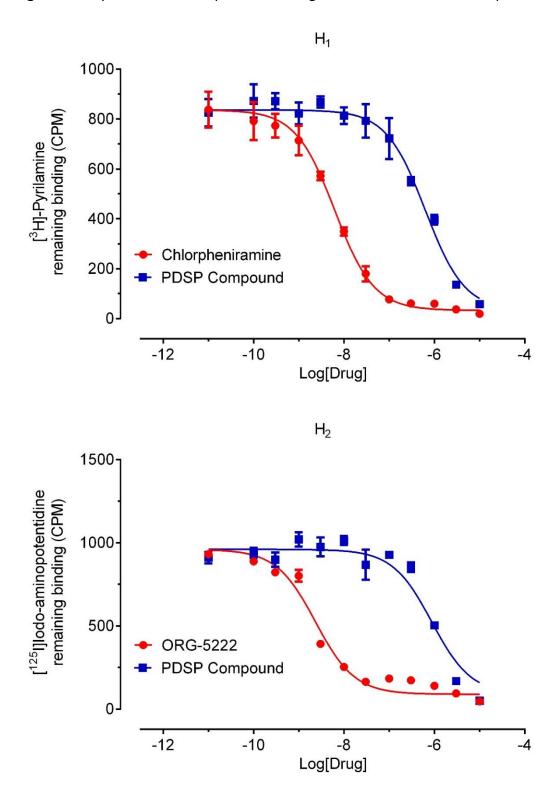


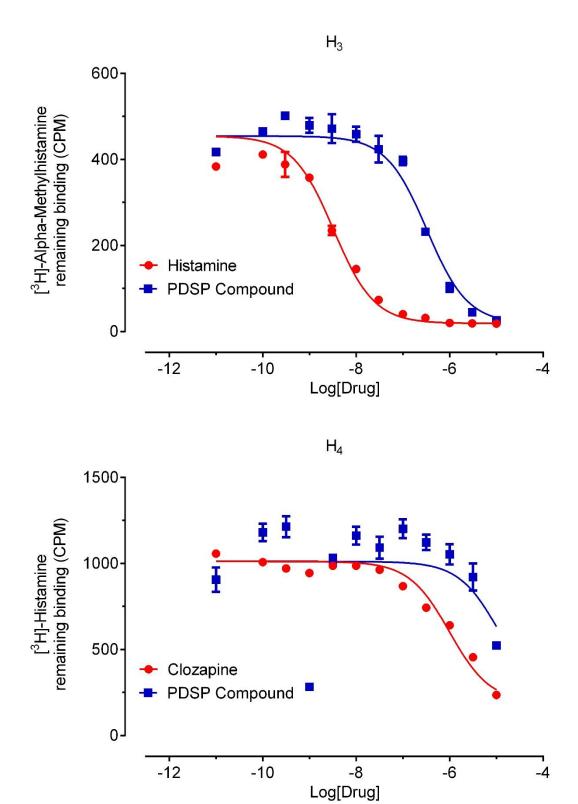




**Table 9**. Histamine receptors, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference K<sub>i</sub> values from >2 years are also included.

# Histamine receptors


Histamine Binding Buffer: 50 mM Tris HCl, 0.5 mM EDTA, pH 7.4, RT


Standard Wash Buffer: 50 mM Tris HCl, pH 7.4, cold

Filter: GF/B

| Target         | Radioligand $pK_d \pm SEM (K_d, nM)$ | Radioligand<br>used (nM) | Reference Ligand pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) | Literature |
|----------------|--------------------------------------|--------------------------|--------------------------------------------------------------|------------|
| H <sub>1</sub> | [ <sup>3</sup> H]-Pyrilamine         | 0.6 – 2.0                | Chlorpheniramine                                             | (60, 61)   |
|                | 9.01 ± 0.05 (0.97)                   |                          | 8.78 ± 0.02 (1.64)                                           |            |
| H <sub>2</sub> | [ <sup>125</sup> l]-lodo-            | 0.02 - 0.05              | ORG-5222                                                     | (62)       |
|                | aminopotentidine                     |                          | 9.05 ± 0.04 (0.90)                                           |            |
|                | 10.47 ± 0.12 (0.03)                  |                          |                                                              |            |
| H <sub>3</sub> | $[^3 H]$ - $lpha$ -methylhistamine   | 0.5 – 1.0                | Histamine                                                    | (63)       |
|                | 9.11 ± 0.07 (0.78)                   |                          | 8.30 ± 0.03 (4.99)                                           |            |
| H <sub>4</sub> | [ <sup>3</sup> H]-Histamine          | 1.0 – 5.0                | Clozapine                                                    | (64, 65)   |
|                | 8.26 ± 0.08 (5.46)                   |                          | 6.60 ± 0.06 (250)                                            |            |

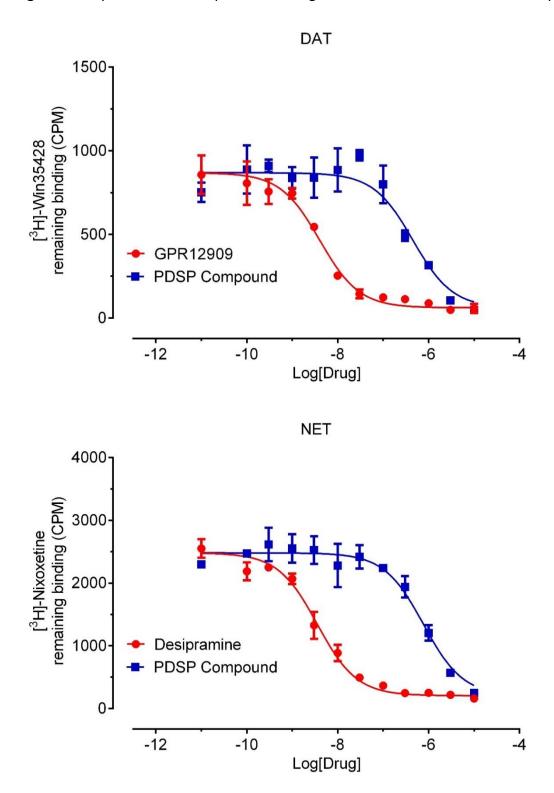
**Figure 17**. Representative competitive binding curves with Histamine receptors.

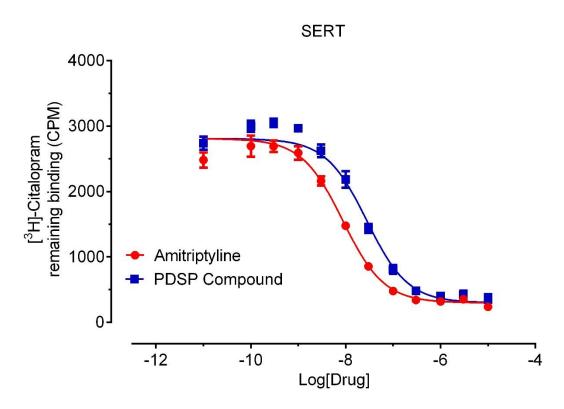




**Table 10**. Neurotransmitter transporters, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference  $K_i$  values from >2 years are also included.

# Neurotransmitter transporters


Transporter Binding Buffer: 10 mM HEPES, 135 mM NaCl, 5 mM KCl, 0.8 mM MgCl<sub>2</sub>, 1 mM ETGA, pH


7.4, RT

Transporter Wash Buffer: Transporter binding buffer, pH 7.4, cold

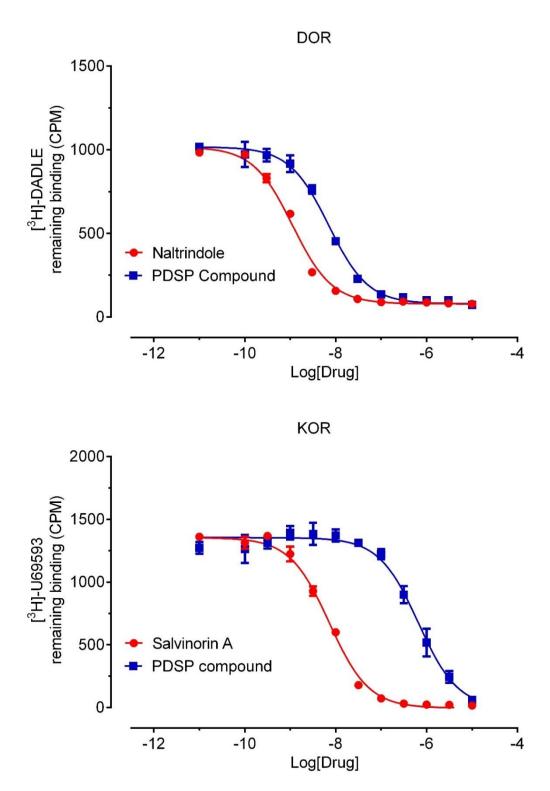
| Target | Radioligand                  | Radioligand | Reference Ligand                            | Literature |
|--------|------------------------------|-------------|---------------------------------------------|------------|
|        | $pK_d \pm SEM (K_d, nM)$     | used (nM)   | pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) |            |
| DAT    | [ <sup>3</sup> H]-Win35428   | 3.6 – 16.0  | GBR12909                                    | (66, 67)   |
|        | 8.02 ± 0.04 (9.47)           |             | 8.33 ± 0.02 (4.73)                          |            |
| NET    | [ <sup>3</sup> H]-Nisoxetine | 1.3 – 5.0   | Desipramine                                 | (68, 69)   |
|        | 8.42 ± 0.06 (3.83)           |             | 8.65 ± 0.01 (2.24)                          |            |
| SERT   | [ <sup>3</sup> H]-Citalopram | 1.5 – 2.0   | Amitriptyline                               | (70, 71)   |
|        | 8.58 ± 0.11 (2.63)           |             | 8.26 ± 0.02 (5.53)                          |            |

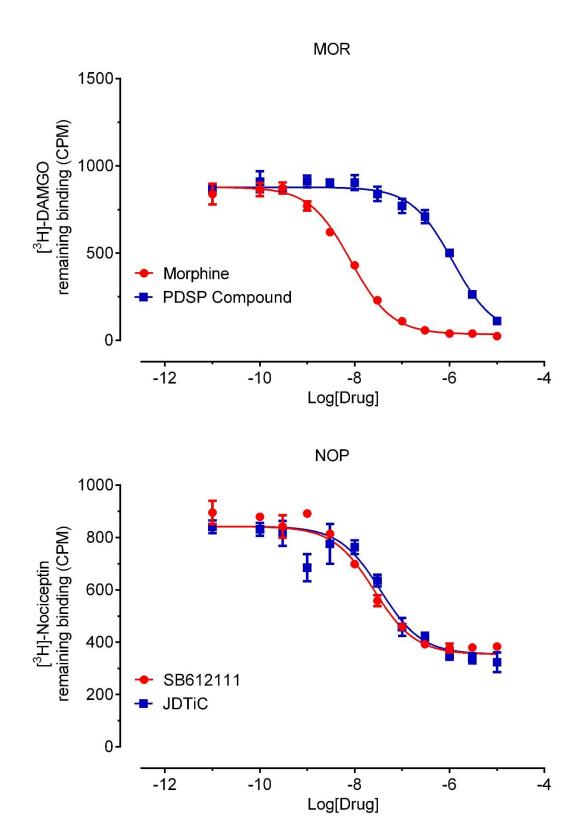
Figure 18. Representative competitive binding curves with neurotransmitter transporters.





**Table 11**. Opioid receptors, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference  $K_i$  values from >2 years are also included.


#### Opioid receptors


Standard Binding Buffer: 50 mM Tris HCl, 10 mM MgCl<sub>2</sub>, 0.1 mM EDTA, pH 7.4, RT

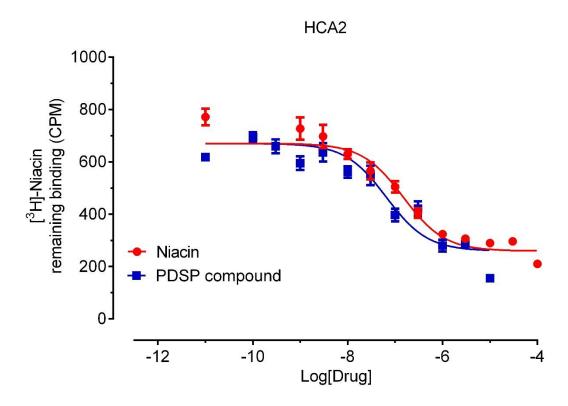
Standard Wash Buffer: 50 mM Tris HCl, pH. 7.4, 4 °C to 8 °C

| Target | Radioligand<br>pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | Radioligand used (nM) | Reference Ligand pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM)   | Literature |
|--------|------------------------------------------------------------|-----------------------|----------------------------------------------------------------|------------|
| DOR    | [ <sup>3</sup> H]-DADLE<br>8.57 ± 0.05 (2.69)              | 1.0 – 2.0             | Naltrindole<br>9.30 ± 0.02 (0.50)                              | (72, 73)   |
| KOR    | [ <sup>3</sup> H]-U69593<br>9.08 ± 0.04 (0.83)             | 0.6 – 1.2             | Salvinorin A<br>8.53 ± 0.02 (2.98)                             | (74, 75)   |
| MOR    | [ <sup>3</sup> H]-DAMGO<br>8.92 ± 0.05 (1.20)              | 1.0 – 2.0             | DAMGO<br>8.75 ± 0.02 (1.76)                                    | (76, 77)   |
| NOP    | [ <sup>3</sup> H]-Nociceptin<br>9.11 ± 0.12 (0.78)         | 0.5 – 2.0             | JDTiC<br>7.94 ± 0.06 (11.56)<br>SB612111<br>8.59 ± 0.10 (2.59) | (78, 79)   |

Figure 19. Representative competitive binding curves with opioid receptors.






**Table 12**.  $HCA_2$  receptors, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference  $K_i$  values from > 6 months are also included.

# HCA<sub>2</sub> receptors

HCA2 Binding Buffer: 50 mM Tris HCl, 1 mM MgCl<sub>2</sub>, pH 7.4

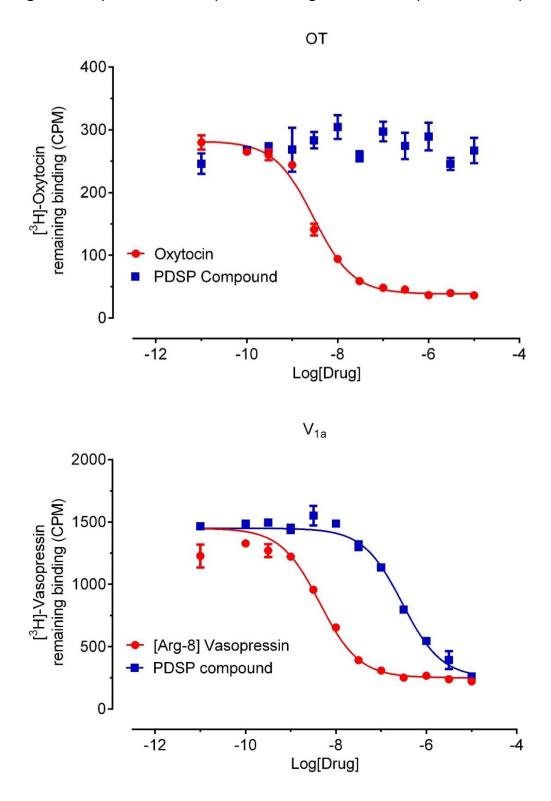
| Target           | Radioligand<br>pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | Radioligand used (nM) | Reference Ligand<br>pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) | Literature |
|------------------|------------------------------------------------------------|-----------------------|-----------------------------------------------------------------|------------|
| HCA <sub>2</sub> | [ <sup>3</sup> H]-Niacin<br>7.90 ± 0.13 (12.47)            | 4.0 – 20.0            | Niacin                                                          | (80–82)    |

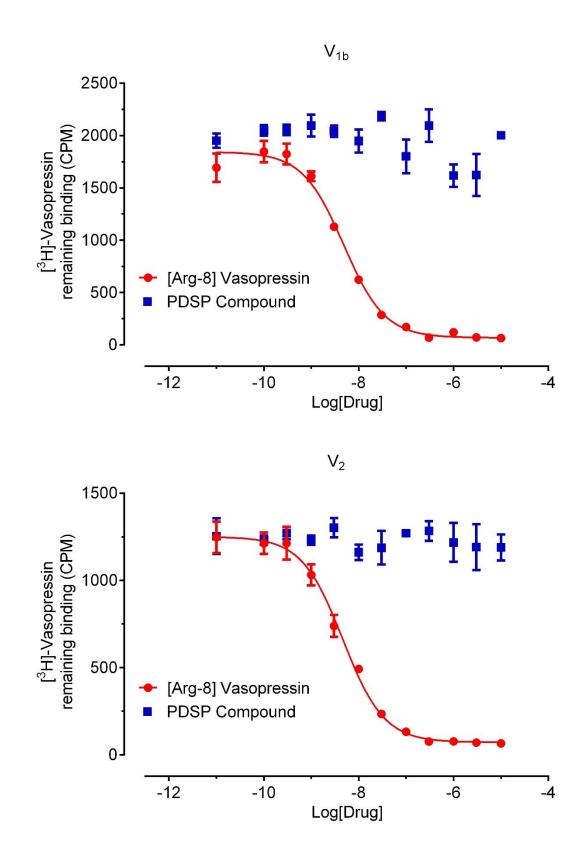
Figure 20. Representative competitive binding curves with HCA<sub>2</sub> receptors.



**Table 13**. Oxytocin and Vasopressin receptors, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference  $K_i$  values from > 2 years are also included.

#### Oxytocin and Vasopressin receptors


Oxytocin Binding Buffer: 50 mM HEPES, 10 mM MgCl<sub>2</sub>, pH 7.4


Vasopressin Binding Buffer: 20 mM Tris HCl, 100 mM NaCl, 10 mM MgCl<sub>2</sub>, 0.1 mg/ml bacitracin, 1

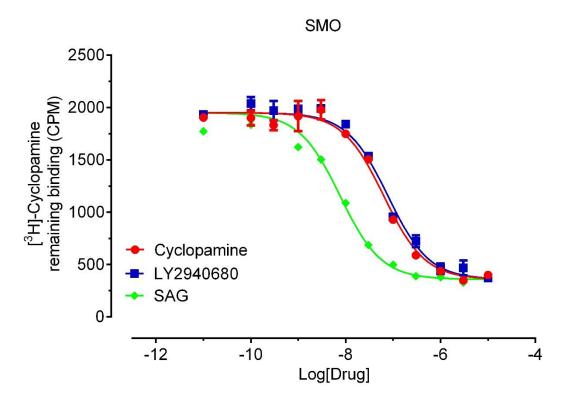
mg/ml BSA, pH 7.4, RT

| Target          | Radioligand<br>pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | Radioligand<br>used (nM) | Reference Ligand pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) | Literature |
|-----------------|------------------------------------------------------------|--------------------------|--------------------------------------------------------------|------------|
| Oxytocin        | [ <sup>3</sup> H]-Oxytocin                                 | 1.5 – 2.0                | Oxytocin                                                     | (83–85)    |
|                 | 8.89 ± 0.06 (1.28)                                         |                          | 8.56 ± 0.04 (2.73)                                           |            |
| V <sub>1a</sub> | [ <sup>3</sup> H]-Vasopressin                              | 0.4 – 1.5                | Vasopressin                                                  | (86, 87)   |
|                 | 9.17 ± 0.06 (0.68)                                         |                          | 8.76 ± 0.05 (1.73)                                           |            |
| V <sub>1b</sub> | [ <sup>3</sup> H]-Vasopressin                              | 0.5 – 2.0                | Vasopressin                                                  |            |
|                 | 9.00 ± 0.05 (0.99)                                         |                          | 8.88 ± 0.05 (1.32)                                           |            |
| V <sub>2</sub>  | [ <sup>3</sup> H]-Vasopressin                              | 0.6 – 1.7                | Vasopressin                                                  |            |
|                 | 8.54 ± 0.05 (2.91)                                         |                          | 8.61 ± 0.05 (2.44)                                           |            |

Figure 21. Representative competitive binding curves with Oxytocin and Vasopressin receptors.






**Table 14**. Smoothened receptor, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference K<sub>i</sub> values from >2 years are also included.

#### Smoothened receptor

SMO Binding Buffer: 50 mM HEPES, 3 mM MgCl<sub>2</sub>, Protease inhibitors, 0.1 mg/ml BSA, pH 7.2, RT SMO Wash Buffer: PBS, pH 7.2, cold

| Target | Radioligand                   | Radioligand | Reference Ligand                            | Literature |
|--------|-------------------------------|-------------|---------------------------------------------|------------|
|        | $pK_d \pm SEM (K_d, nM)$      | used (nM)   | Pk <sub>i</sub> ± SEM (K <sub>i</sub> , nM) |            |
| SMO    | [ <sup>3</sup> H]-Cyclopamine | 2.6 – 5.0   | SAG                                         | (88, 89)   |
|        | 8.42 ± 0.08 (3.81)            |             | 8.05 ± 0.28 (8.93)                          |            |
|        |                               |             | LY2490680                                   |            |
|        |                               |             | 7.76 ± 0.07 (17.57)                         |            |
|        |                               |             | Cyclopamine                                 |            |
|        |                               |             | 785 ± 0.09 (13.98)                          |            |

Figure 22. Representative competitive binding curves with SMO receptors.



**Table 15**. Prostanoid receptors, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. These assays are seldom requested and were not carried out in the last 5 years.

### Prostanoid receptors

Prostanoid binding buffer: 25 mM Tris HCl, 10 mM MgCl<sub>2</sub>, 1 mM EDTA, pH 7.4, RT

| Target | get Radioligand [Radioligand] used (nM) |    | Literature |
|--------|-----------------------------------------|----|------------|
| EP3    | [ <sup>3</sup> H]-PGE2                  | 10 | (90, 91)   |
| EP4    | [ <sup>3</sup> H]-PGE2                  | 10 |            |

**Table 16**. PKC subunits, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. These assays are seldom requested and were not carried out in the last 5 years.

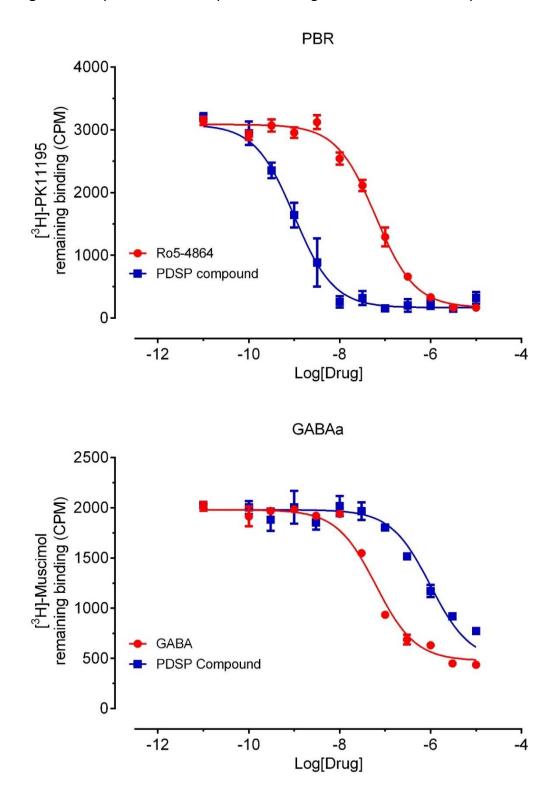
#### PKC

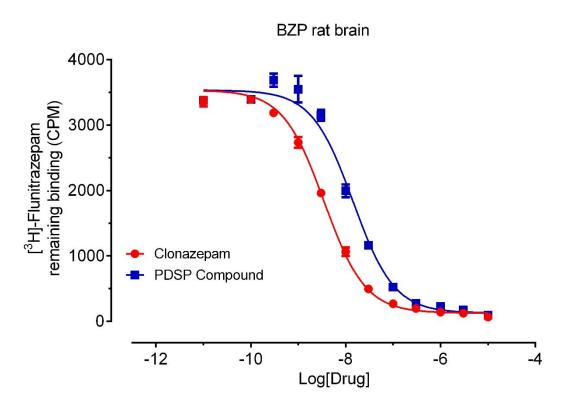
PKC Binding Buffer: 50 mM Tris HCl, 1 mM CaCl $_2$ , 4 mg/ml BSA, 100  $\mu g/ml$  phosphatidylserine, pH

7.4, RT

| Target | Radioligand            | [³H] in nM | Literature |
|--------|------------------------|------------|------------|
| ΡΚCα   | [ <sup>3</sup> H]-PDBU | 3          | (92–94)    |
| РКСβ   | [³H]-PDBU              | 3          |            |
| ΡΚСγ   | [ <sup>3</sup> H]-PDBU | 3          |            |
| ΡΚСδ   | [ <sup>3</sup> H]-PDBU | 3          |            |
| ΡΚCε   | [ <sup>3</sup> H]-PDBU | 3          |            |

**Table 17**. GABAA receptors, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference  $K_i$  values from >2 years are also included.


#### GABA receptors


GABA/PBR Binding Buffer: 50 mM Tris Acetate, pH 7.4, RT

Benzodiazepin (BZP) Binding Buffer: 50 mM Tris HCl, 2.5 mM CaCl<sub>2</sub>, pH 7.4, RT

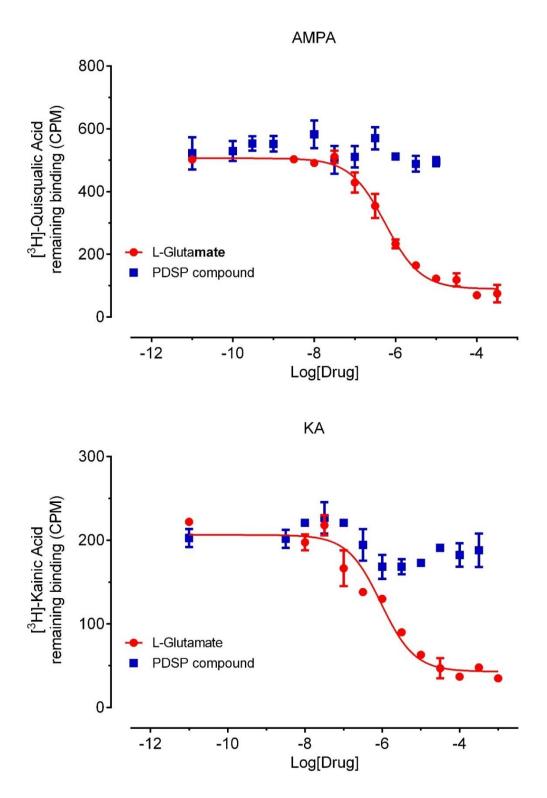
| Target      | Radioligand pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | Radioligand used (nM) | References          | Literature |
|-------------|---------------------------------------------------------|-----------------------|---------------------|------------|
| GABA/PBR    | [ <sup>3</sup> H]-PK11195                               | 0.3 – 2.0             | Ro5-4864            | (95, 96)   |
| (rat brain) | 9.00 (1.0)                                              |                       | 7.82 ± 0.02 (14.97) |            |
| GABAA       | [ <sup>3</sup> H]-Muscimol                              | 9.50 – 25.0           | GABA                | (97, 98)   |
| (rat brain) | 8.11 ± 0.06 (7.70)                                      |                       | 6.86 ± 0.08 (137.5) |            |
| GABAA/BZP   | [ <sup>3</sup> H]-Flunitrazepam                         | 0.6 – 4.0             | Clonazepam          | (99, 100)  |
| (rat brain) | 8.79 ± 0.14 (1.64)                                      |                       | 8.99 ± 0.03 (1.03)  |            |

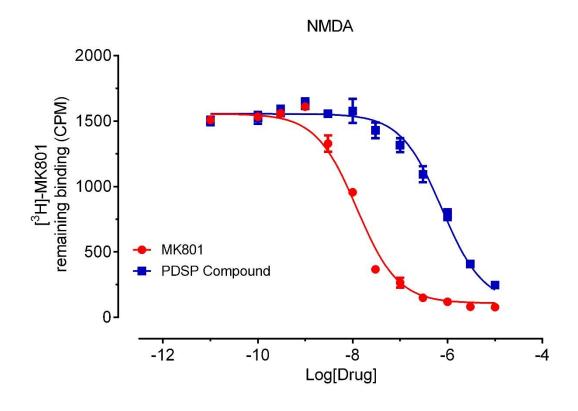
Figure 23. Representative competitive binding curves with GABA receptors.



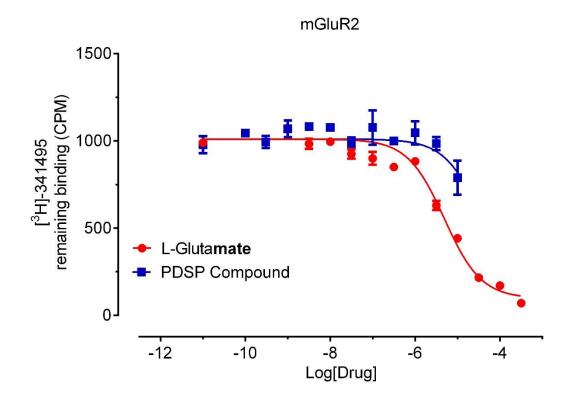


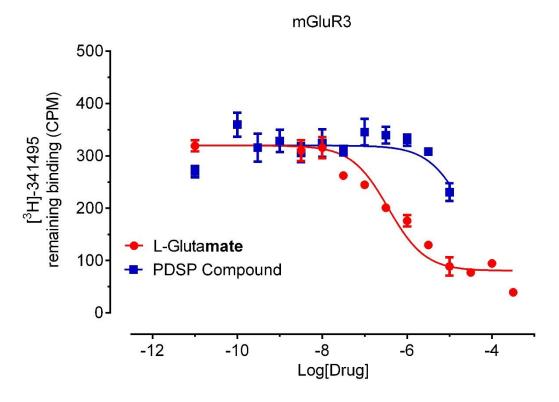
**Table 18**. Glutamate receptors radioligands, corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical affinity results from the last >2 years are listed.

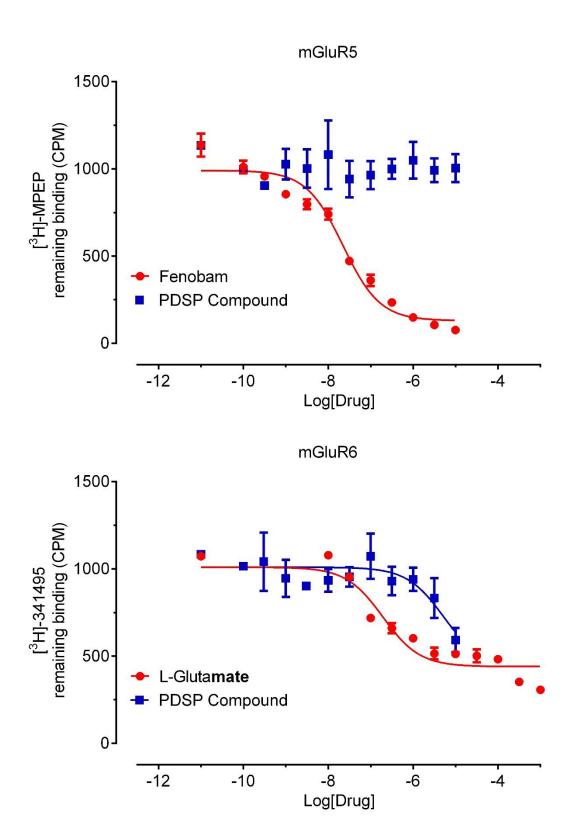

#### Glutamate receptors


NMDA Binding Buffer: 20 mM HEPES, 1 mM EDTA, 100  $\mu$ M L-Glutamate, 100  $\mu$ M Glycine, pH 7.0, RT

mGluR Binding Buffer: 50 mM Tris HCl, 10 mM MgCl2, 0.1 mM EDTA, pH 7.4, RT


| Target            | Radioligand                                 | Radioligand | Reference Ligand                            | Literature |  |
|-------------------|---------------------------------------------|-------------|---------------------------------------------|------------|--|
| . a. get          | pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | used (nM)   | pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) |            |  |
| NMDA              | [ <sup>3</sup> H]-MK801                     | 1.4 - 13.0  | MK801                                       | (101–103)  |  |
| (rat brain)       | 8.47 ± 0.07 (3.38)                          |             | 8.41 ± 0.04 (3.88)                          |            |  |
| NR2B              | [ <sup>3</sup> H]-Ifenprodil                | 3.0 - 5.0   | Ifenprodil                                  | (104–107)  |  |
|                   | (3.27)                                      |             | 8.96 ± 0.03 (1.10)                          |            |  |
| AMPA              | [ <sup>3</sup> H]-Quisqualic Acid           | 25.0 - 32.0 | L-Glutamate                                 |            |  |
|                   | (30)                                        |             | 6.19 ± 0.09 (647)                           |            |  |
| KA                | [ <sup>3</sup> H]-Kainic Acid               | 8.0 - 12.0  | L-Glutamate                                 | (108, 109) |  |
|                   | 8.02 ± 0.15 (9.58)                          |             | 6.22 ± 0.14 (596)                           |            |  |
|                   | mGluRs                                      |             |                                             |            |  |
| mGlu₁             |                                             | Being dev   | eloped                                      |            |  |
| mGlu <sub>2</sub> | [ <sup>3</sup> H]-LY341495                  | 2.1 - 4.6   | L-Glutamate                                 | (110–112)  |  |
|                   | 8.66 ± 0.07 (2.17)                          |             | 5.51 ± 0.05 (3090)                          |            |  |
| mGlu₃             | [ <sup>3</sup> H]-LY341495                  | 1.8 - 2.5   | L-Glutamate                                 |            |  |
|                   | 8.43 ± 0.17 (3.71)                          |             | 6.48 ± 0.10 (3340)                          |            |  |
| mGlu₄             |                                             | Being dev   | eloped                                      |            |  |
| mGlu₅             | [ <sup>3</sup> H]-MPEP                      | 1.0 - 5.0   | Fenobam                                     | (113)      |  |
|                   | 8.47 ± 0.16 (3.40)                          |             | 7.85 ± 0.08 (14.0)                          |            |  |
| mGlu <sub>6</sub> | [ <sup>3</sup> H]-LY341495                  | 3.0 - 5.0   | L-Glutamate                                 | (114)      |  |
|                   | 8.47 ± 0.16 (3.40)                          |             | 7.45 ± 0.37 (35.5)                          |            |  |
| mGlu <sub>7</sub> |                                             | Being dev   | reloped                                     |            |  |
| mGlu <sub>8</sub> |                                             | Being dev   | reloped                                     |            |  |


Figure 24. Representative competitive binding curves for NMDA and mGluR5 receptors.



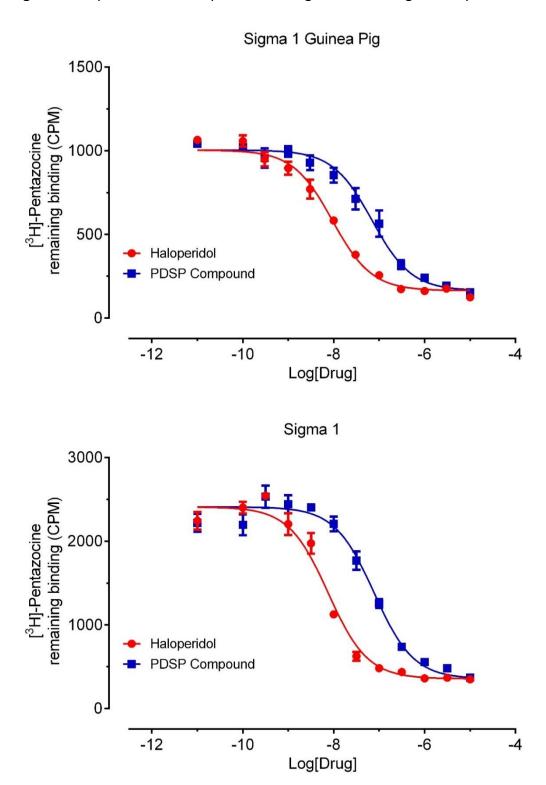


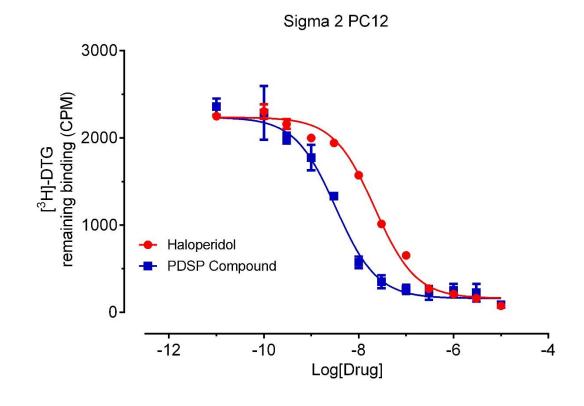


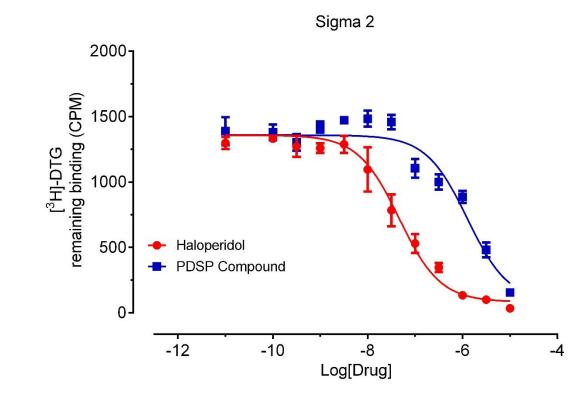








**Table 19**. Sigma receptors, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference  $K_i$  values from > 6 months are also included.


# Sigma receptors


Sigma Binding Buffer: 50 mM Tris HCl, pH 8.0, RT Standard Wash Buffer: 50 mM Tris HCl, pH 7.4, cold

| Target       | Radioligand<br>pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | Radioligand<br>used (nM) | Reference Ligand pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) | Literature |
|--------------|------------------------------------------------------------|--------------------------|--------------------------------------------------------------|------------|
| Sigma 1      | [ <sup>3</sup> H]-Pentazocine                              | 2.0 - 10.0               | Haloperidol                                                  | (115–117)  |
| (Guinea pig) | 8.19 ± 0.18 (6.50)                                         |                          | 8.45 ± 0.01 (3.54)                                           |            |
| Sigma 1      | [ <sup>3</sup> H]-Pentazocine                              | 4.0 – 5.0                | Haloperidol                                                  |            |
| (Human)      | 8.08 ± 0.12 (8.32)                                         |                          | 8.14 ± 0.04 (6.77)                                           |            |
| Sigma 2      | [³H]-DTG                                                   | 5.0 – 7.0                | Haloperidol                                                  |            |
| (PC12)       | 8.00 ± 0.03 (9.90)                                         |                          | 7.86 ± 0.01 (13.91)                                          |            |
| Sigma 2      | [³H]-DTG                                                   | 5.0                      | Haloperidol                                                  |            |
| (Human)      | 7.55 ± 0.18 (27.93)                                        |                          | 7.80 ± 0.04 (15.87)                                          |            |

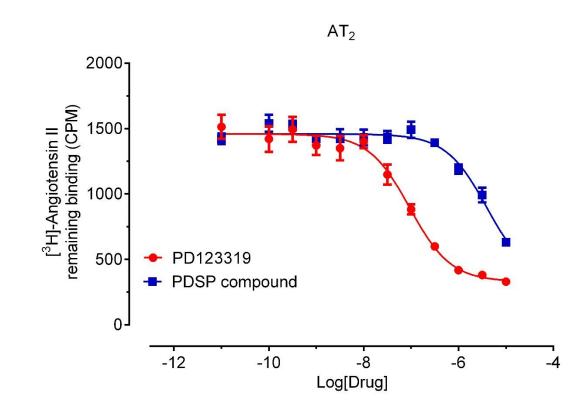
Figure 25. Representative competitive binding curves with Sigma receptors.







**Table 20**. Angiotensin II receptors, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference K<sub>i</sub> values (if available) from > 6 months are also included.


#### Angiotensin receptors

Angiotensin Binding Buffer: 50 mM Tris HCl, 150 mM NaCl, 5 mM MgCl<sub>2</sub>, 0.5 mg/ml BSA, 100 mM

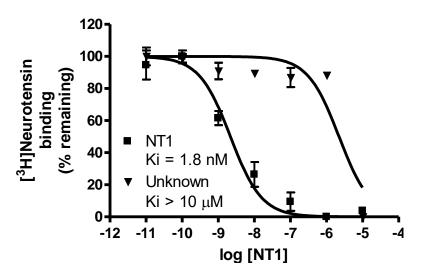
Bacitracin, pH 7.4, RT

| Target          | Radioligand                                 | [³H] in nM | Reference Ligand                            | Literature |
|-----------------|---------------------------------------------|------------|---------------------------------------------|------------|
|                 | pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) |            | pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) |            |
| AT <sub>1</sub> | [³H]-Angiotensin II                         | 0.1        | Candesartan                                 | (118, 119) |
| AT <sub>2</sub> | [ <sup>3</sup> H]-Angiotensin II            | 3.50       | PD123319                                    |            |
|                 | 8.19 ± 0.28 (6.52)                          |            | 7.52 ± 0.06 (30.0)                          |            |

Figure 26. Representative binding curve for AT<sub>2</sub> receptors.



**Table 21**. Neurotensin receptors, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference K<sub>i</sub> values (if available) from > 6 months are also included.


#### Neurotensin receptors

Neurotensin binding buffer: 50 mM Tris HCl, 0.2% BSA Standard Wash Buffer: 50 mM Tris HCl, pH 7.4, cold

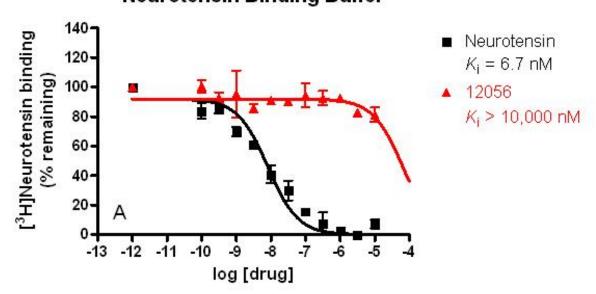

| Target           | Radioligand<br>pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | Radioligand<br>used (nM) | Reference Ligand<br>pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) | Literature |
|------------------|------------------------------------------------------------|--------------------------|-----------------------------------------------------------------|------------|
| NTS <sub>1</sub> | [ <sup>3</sup> H]-Neurotensin                              | 1.0 - 4.0                | Neurotensin                                                     | (120–122)  |
|                  | 8.25 ± 0.15 (5.65)                                         |                          | 8.40 ± 0.07 (3.95)                                              |            |
| NTS <sub>2</sub> | [ <sup>3</sup> H]-Neurotensin                              | 1.2                      | Neurotensin                                                     |            |

Figure 27. Representative binding curve for Neurotensin receptors.

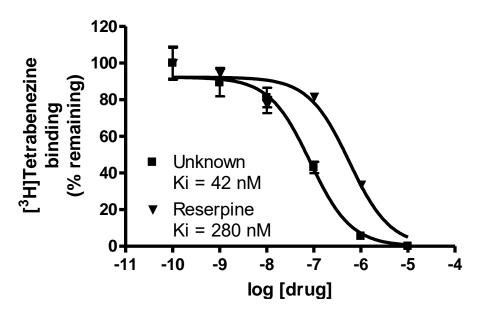
# NT1 Receptor [3H]Neurotensin (2.0 nM) 50 mM Tris-HCl, 0.2% BSA



# Neurotensin<sub>2</sub> Receptor [<sup>3</sup>H]Neurotensin (1.25 nM) Neurotensin Binding Buffer



**Table 22**. VMAT2 transportor, radioligand and corresponding concentration, reference compound, and buffers for primary and secondary radioligand binding assays.


# VMAT2 transporter

VMAT2 binding buffer: 50 mM Tris HCl, 0.2% BSA Standard Wash Buffer: 50 mM Tris HCl, pH 7.4, cold

| Target | Radioligand                     | Radioligand used (nM) | Reference Ligand | Literature |
|--------|---------------------------------|-----------------------|------------------|------------|
| VMAT2  | [ <sup>3</sup> H]-Tetrabenazine | 1.5                   | Reserpine        | (123)      |
|        |                                 |                       |                  |            |

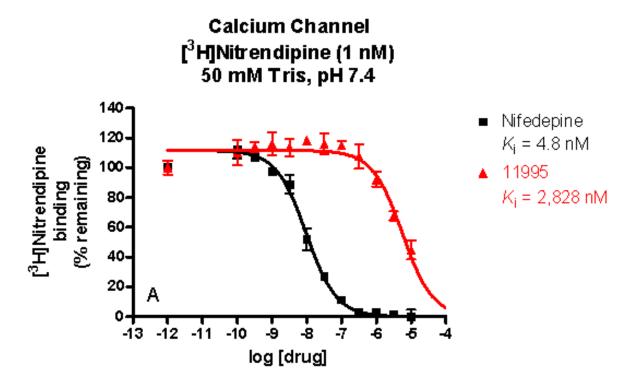
Figure 28. Representative binding curve for VMAT2 transporters.

# VMAT2 Transporter [3H]Tetrabenezine (1.5 nM) 50 mM HEPES, 300 mM sucrose, pH 8.0



**Table 23**. Calcium and sodium channels, radioligands and corresponding concentrations, reference compounds, and buffers for primary and secondary radioligand binding assays. Historical reference K<sub>i</sub> values (if available) from > 6 months are also included.

#### Calcium and Sodium channels


Calcium channel Binding Buffer: 50 mM Tris HCl, 50 mM NaCl, 1 mM CaCl $_2$ , pH 7.4, RT Sodium channel Binding Buffer: 50 mM HEPES, 130 mM Choline Cl, 5.4 mM KCl, 0.8 mM MgSO $_4$ , 5.5

mM Glucose, 1 μM tetrodotoxin, 1 mg/ml BSA, 30 μg/well scorpion verom, pH 7.4, 37°C.

Standard Wash Buffer: 50 mM Tris HCl, pH 7.4, cold

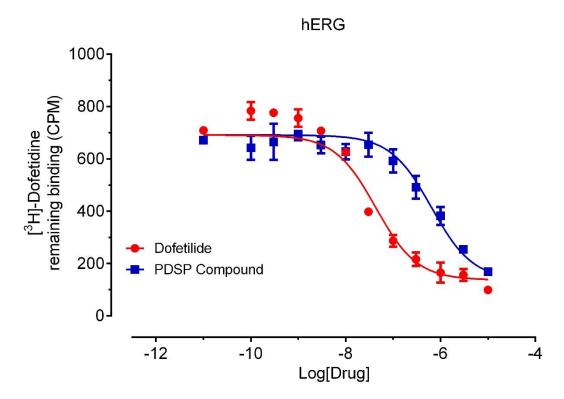
| Target           | Radioligand                                 | [Radioligand] | Reference Ligand                            | Literature |  |
|------------------|---------------------------------------------|---------------|---------------------------------------------|------------|--|
|                  | pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | used (nM)     | pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) |            |  |
| Ca <sup>2+</sup> | [ <sup>3</sup> H]-PN200110                  | 2.0 - 3.0     | Nifendipine                                 | (124, 125) |  |
| channel          | 8.52 ± 0.12 (3.04)                          |               | 8.05 ± 0.17 (8.85)                          | , ,        |  |
|                  | [ <sup>3</sup> H]-Nitrendipine              | 3.0 - 5.0     | Nifendipine                                 | (126, 127) |  |
|                  | 8.21 ± 0.25 (6.20)                          |               |                                             | , , ,      |  |
| Na⁺              | [ <sup>3</sup> H]-Batrachotoxin             |               | Veratridine                                 | (128, 129) |  |
| channel          |                                             |               |                                             |            |  |

Figure 29. Representative figure for Ca<sup>2+</sup> channel binding assay.



**Table 24**. HERG potassium channel, radioligand and corresponding concentration, reference compound, and buffers for primary and secondary radioligand binding assays. The concentration of radioligand used for competition binding assay is usually near the  $K_d$  value, or as listed. Historical reference  $K_i$  values from >2 years are also included.

#### hERG channel


hERG binding buffer: 10 mM HEPES, 135 mM NaCl, 5 mM KCl, 0.8 mM MgCl<sub>2</sub>, 1 mM EGTA, 1 mg/ml

BSA, pH 7.4, RT

hERG wash buffer: hERG binding buffer, pH 7.4, cold

| Target | Radioligand<br>pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | [Radioligand]<br>used (nM) | Reference Ligand pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) | Literature |
|--------|------------------------------------------------------------|----------------------------|--------------------------------------------------------------|------------|
| hERG   | [³H]-Dofetilide                                            | 3.0 – 5.0                  | Dofetilide                                                   | (130, 131) |
|        | 8.39 ± 0.03 (4.07)                                         |                            | 8.37 ± 0.08 (4.29)                                           |            |

Figure 30. Representative binding curve with hERG potassium channel.



**Table 25**. Imidazoline receptor, radioligand and corresponding concentration, reference compound, and buffers for primary and secondary radioligand binding assays. The concentration of radioligand used for competition binding assay is usually near the  $K_d$  value, or as listed.

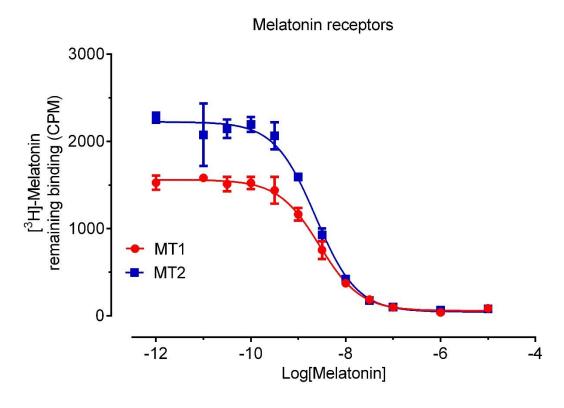
#### Imidazoline

Imidazoline binding buffer: 5 mM Tris HCl, 5 mM HEPES, 0.5 mM EGTA, 0.5 mM EDTA, 0.5 mM MgCl $_2$ , pH 8.0, RT

Standard wash buffer: 50 mM Tris HCl, pH 7.4, cold

| Target        | Radioligand                 | Radioligand used (nM) | Reference Ligand | Literature |  |
|---------------|-----------------------------|-----------------------|------------------|------------|--|
| Imidazoline 1 | [ <sup>3</sup> H]-Clonidine | 0.1 nM                | Naphazoline      | (132, 133) |  |
|               |                             |                       |                  |            |  |

**Table 26**. Melatonin receptors, radioligand and corresponding concentration, reference compound, and buffers for primary and secondary radioligand binding assays. These are new binding assays, and thus have no legacy data.


# Melatonin receptors (Being developed and optimized)

Standard binding buffer: 50 mM Tris HCl, 10 mM MgCl<sub>2</sub>, 0.1 mM EDTA, pH 7.4, RT

Standard wash buffer: 50 mM Tris HCl, pH 7.4, cold

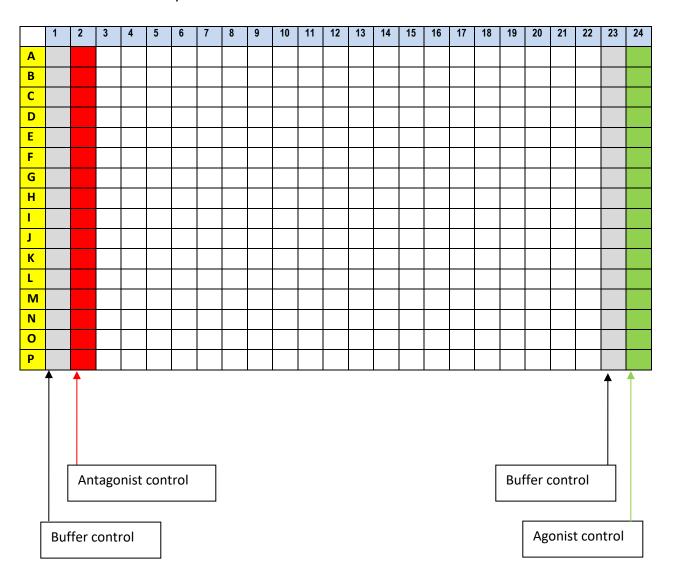
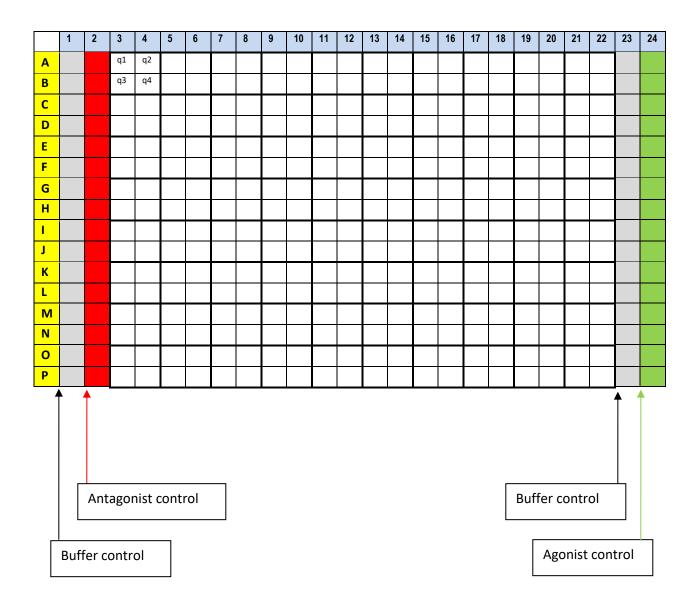
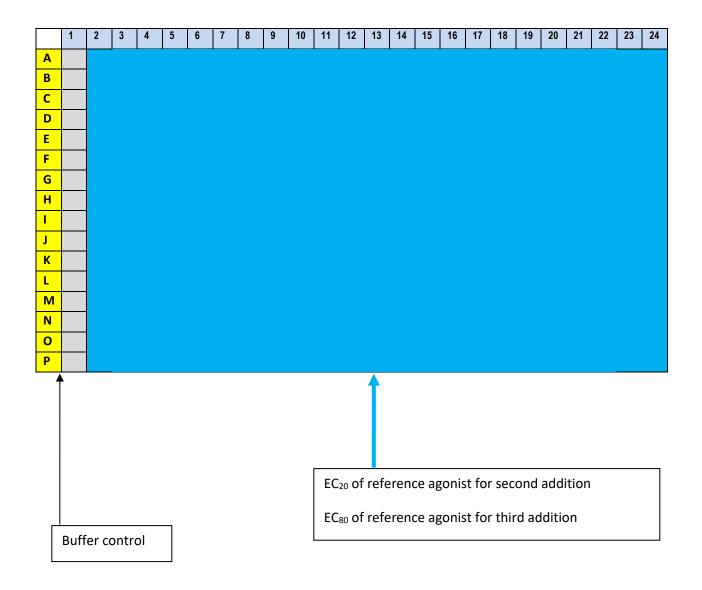

| Target          | Radioligand<br>pK <sub>d</sub> ± SEM (K <sub>d</sub> , nM) | [Radioligand]<br>used (nM) | Reference Ligand pK <sub>i</sub> ± SEM (K <sub>i</sub> , nM) | Literature |
|-----------------|------------------------------------------------------------|----------------------------|--------------------------------------------------------------|------------|
| MT <sub>1</sub> | [ <sup>3</sup> H]-Melatonin                                | 0.5 - 1.0                  | Melatonin                                                    | (134–136)  |
| $MT_2$          | [ <sup>3</sup> H]-Melatonin                                | 0.5 - 1.0                  | Melatonin                                                    |            |

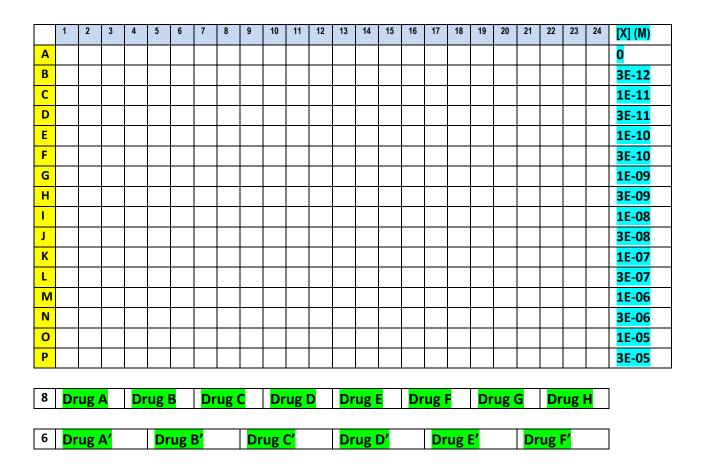
Figure 31. Representative binding curves with melatonin receptors.



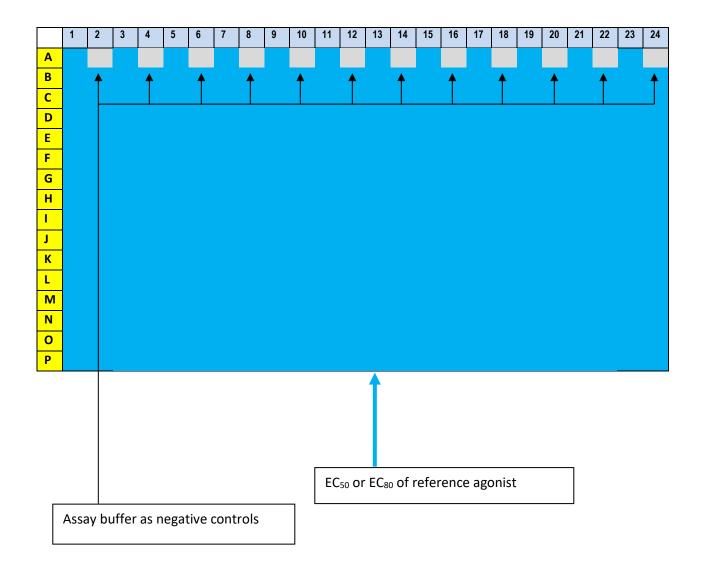

# **Section 2: Functional assays**


**2.1. Drug plate preparations for functional assays:** Drug plates for functional assays are either manually prepared or made by STAR robotics. The following drug plate maps are the ones routinely used for functional assays.

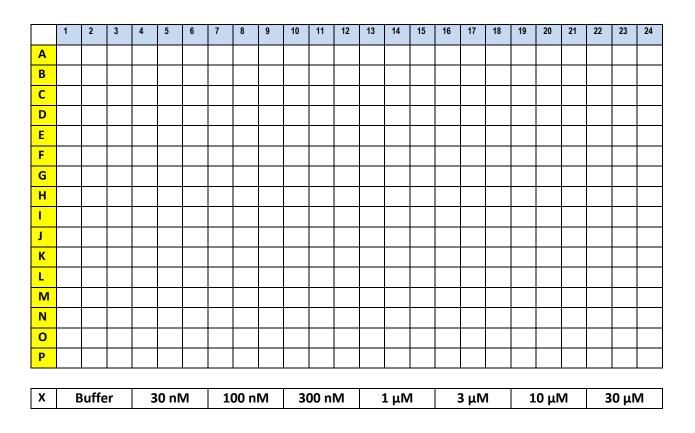



**Figure 32.** 384-well drug plate map #1 for primary screening: Singlet format (first addition). A total of 320 different compounds can be plated in singlet format in a 384-well drug plate. Columns 1, 2, 23, and 24 are reserved for positive and negative controls.




**Figure 33**. 384-well drug plate map #2 for primary screening: quadrant format (first addition). A total of 80 different compounds can be plated in quadrant format (q1, q2, q3, and q4) in a 384-well drug plate. Columns 1, 2, 23, and 24 are reserved for positive and negative controls.




**Figure 34**. 384-well drug plate map #3: second or third addition in primary screening assays (second addition). Except for Column 1 (which serves as negative control with assay buffer for all additions), all the other wells receive  $EC_{20}$  or  $EC_{80}$  of the reference agonist to determine allosteric potentiator or antagonist activity.



**Figure 35**. 384-well drug plate map #4: agonist or antagonist dose-responses for secondary screenings (first addition): Serial dilutions of eight compounds can be made in triplicate (Drug A to H) or six in quadruplicate (Drug A' to F') (indicated below the plate template) from high to low concentrations (final concentrations are indicated to the right of plate template). Either format is used; one of the compounds is a positive control with a known agonist and/or antagonist, such as acetylcholine and/or atropine for muscarinic receptors.



**Figure 36.** 384-well drug plate map #5:  $EC_{50}$  or  $EC_{80}$  of reference agonist as second addition for antagonist activity (second addition). The even-numbered wells in row A serve as negative controls with assay buffer; while the other wells on the plate contain  $EC_{50}$  or  $EC_{80}$  concentrations of the reference agonist.



**Figure 37.** 384-well drug plate map #6 for Schild plot analysis (first addition): Antagonist or allosteric modulator is made in 7 concentrations as indicated below the drug plate template. Each concentration (including the buffer control) has three columns.

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | [X] (M) |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---------|
| Α |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 0       |
| В |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 3E-12   |
| С |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1E-11   |
| D |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 3E-11   |
| E |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1E-10   |
| F |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 3E-10   |
| G |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1E-09   |
| Н |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 3E-09   |
| T |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1E-08   |
| J |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 3E-08   |
| K |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1E-07   |
| L |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 3E-07   |
| M |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1E-06   |
| N |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 3E-06   |
| 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1E-05   |
| P |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 3E-05   |

**Figure 38.** 384-well drug plate map #7 for Schild plot analysis (second addition). Reference agonist is made in the following serial dilutions (as indicated to the right of the drug plate template). Each concentration (including the buffer control) has one complete row.

# 2.2. General procedures for PDSP functional assays:

In general, PDSP functional assays are carried out in two steps, primary and secondary assays (unless otherwise stated). In primary screening assays, compounds are tested in triplicate or quadruplicate at final concentration of 10  $\mu$ M (or 10  $\mu$ g/ml for crude extracts) or specific concentrations upon request for agonist and antagonist activities (see 384-well drug plate maps #1, #2, and #3 for detailed setups). Results are normalized and transformed to percentage values. For agonists, the reference agonist activity at 10  $\mu$ M is set as 100% and the basal activity with buffer as 0%. For orphan GPCRs without a known agonist as a reference, activity is expressed as percentage value of basal (with buffer). For antagonists, the basal activity with buffer is set as 100% inhibition and the activity of an EC80 concentration of the reference agonist as 0% inhibition. For allosteric potentiators, the activity of the EC20 concentration of the reference agonist is set as 0% potentiation. Compounds with a minimum of 30% agonist activity, or 50% antagonist activity, or 30% potentiation above control are flagged for secondary screening (dose-response) assays.

In secondary functional assays, potential agonist hits are tested in full dose-response curves to determine efficacy and potency (see 384-well drug plate map #4). Potential antagonist hits are tested in full dose-response curves to determine IC<sub>50</sub> values against EC<sub>50</sub> to EC<sub>80</sub> concentrations of reference agonist (see 384-well drug plate map #5 for detailed setup). Potential antagonist hits and positive allosteric modulators are further characterized, if necessary, in Schild plot analysis to obtain pK<sub>B</sub> values (see 384-well drug plate maps #6 and #7 for detailed setup). Schild plot analysis is designed to obtain full agonist dose-response curves in the absence and presence of increasing concentrations of potential antagonists or allosteric modulators. For those antagonists shifting agonist dose-response curves to the right and also reducing Emax, a modified Lew and Angus analysis is applied to obtain pK<sub>B</sub> values. For allosteric modulators, secondary dose-response curves are also analyzed using the allosteric operational model to obtain modulation parameters (such as  $\alpha$  and  $\alpha$ ). For studies of ligand functional selectivity and bias among multiple signaling pathways, dose-response results are analyzed using the Black and Leff operational model to quantify bias. Detailed procedures for these secondary assays are given in the following data analysis sections.

Secondary functional assays provide the following parameters for the PDSP dabatase: maximum activation or inhibition after normalization (therefore in percentage values), concentration range used in the assay (lowest and highest concentrations), Hill slope of the dose-response curve, and corresponding potency.

## 2.3. Data analysis for functional assays

Unless otherwise stated, all functional results are analyzed using GraphPad Prism v5.0 using its built-in functions.

**2.3.1: Agonist activity:** Functional assay results are plotted against concentrations and analyzed with following 4-parameter built-in agonist dose-response function in GraphPad Prism v5.0.

$$Response = Bottom + \frac{(Top - Bottom)}{1 + 10^{(LogEC_{50} - X)n}}$$

In which, **Top** and **Bottom** are the maximum response ( $E_{max}$ ) and basal level, respectively; **X** is the agonist concentration and **n** is the Hill slope;  $EC_{50}$  is the concentration that generated a 50% response.

**2.3.2: Antagonist activity:** To determine antagonist activity, agonist responses are measured at a fixed EC<sub>80</sub> concentration of the reference agonist and in the presence of serial dilutions of the antagonist. Results are fitted with the following inhibitory dose-response function to determine the IC<sub>50</sub>.

$$Response = Bottom + \frac{(Top - Bottom)}{1 + 10^{(LogIC_{50} - X)n}}$$

The  $IC_{50}$  is then converted to  $K_i$  using Cheng-Prusoff equation (7):

$$K_i = \frac{IC_{50}}{1 + \frac{L}{EC_{50}}}$$

in which  $\mathbf{K}_i$  is the ligand binding affinity determined from antagonist dose-response assay;  $\mathbf{IC}_{50}$  is the antagonist concentration at which point 50% inhibition is reached;  $\mathbf{L}$  is the reference agonist concentration used in the assay (usually  $\mathbf{EC}_{50}$  to  $\mathbf{EC}_{80}$  concentration of the reference agonist);  $\mathbf{EC}_{50}$  is the predetermined potency of the reference agonist.

2.3.3. Schild plot analysis: The PDSP has adopted nonlinear regression analysis with the modified Lew and Angus method to estimate antagonist potency pA2 value. For Schild plot analysis, agonist doseresponses are designed and performed in the absence and presence of 7 concentrations of antagonist in a 384-well plate (see above). Each agonist dose-response is in triplicate. Eight agonist dose-responses share the same X-axis and each set of measured responses is arranged in a Y column titled antagonist concentrations (M). Results are analyzed using the agonist dose-response function as above to determine Bottom and Top values for each dose-response curve. To normalize using Prism's built-in normalization function, the data set is transformed into percentage values with the shared **bottom** as 0% and **Top** of the reference agonist under control conditions as 100%. An equiactive agonist concentration (such as an agonist concentration to generate 20 – 50% response) is selected for all or most curves if possible and corresponding agonist concentrations in the absence and presence of increasing concentrations of antagonist are obtained. Prism 5 has a built-in feature that provides equiactive agonist concentrations if the radio buttom for "Interpolate unknowns from standard curve" is selected. This feature is at the bottom of the Analyze>Fit tab. The equiactive agonist concentrations are plotted in -log format (i.e., pEC<sub>20</sub> or pEC<sub>50</sub>) against corresponding antagonist (B) concentrations (M). The results are fitted with following equation to obtain LogK<sub>B</sub> and n values.

$$Y = -Log(X^n + 10^{LogK_B}) - LogC$$

In which Y is the equiactive agonist concentration in  $-\log$  format (such as pEC<sub>25</sub> or other equally-active agonist concentration values) at corresponding antagonist concentration (X); n is the Schild slope;  $K_B$  is the apparent binding affinity of the tested antagonist. The pA<sub>2</sub> value can be calculated from pK<sub>B</sub>/n. If n = 1 or is not significantly different from 1, pA<sub>2</sub> = pK<sub>B</sub>, and the tested antagonist is

concluded to be competitive with the agonist; otherwise, antagonist may not be competitive with the agonist.

Representative figures and examples are shown on Pages 169, 170, and 171.

**2.3.4.** Quantifying bias and functional selectivity analysis (see Pages 171-174). To quantify functional selectivity and bias factors, we analyze functional dose-esponse results using the Black and Leff operation model as outlined by Kenakin et al., 2012 (137).

$$Response = Basal + \frac{(E_m - Basal)[A]^n \tau^n}{[A]^n \tau^n + ([A] + K_A)^n}$$

Functional dose-response results are analyzed using the above equation in GraphPad Prism V5.0, in which  $E_m$  is the maximal possible response the system can have, and **basal** is the response in the absence of test drugs (i.e., buffer only). The  $E_m$  and **Basal** values are usually 100 and 0 if the responses are normalized to percentage of reference activity (100%).  $K_A$  is the equilibrium dissociation constant of the agonist (A),  $\tau$  is the operational agonist efficacy of the agonist (A) and is defined as  $R_T/K_E$  (where  $R_T$  is the receptor density and  $K_E$  is the intrinsic efficacy of the agonist (A) in a particular signaling pathway, n is the transducer slope for the function between agonist occupancy and measured responses. The fitting parameters  $E_m$  and n are cell-specific and should be shared by all agonists that are being tested at the same pathway.  $Log(\tau/K_A)$  is defined as the "transduction coefficient" for a particular agonist at a measured signaling pathway.

To quantify ligand bias (see following equations and steps), drug activity is measured in two or more pathways for a group of ligands (e.g., agonists) to determine corresponding  $log(\tau/K_A)$  values. For each pathway,  $\Delta log(\tau/K_A)$  values are calculated by subtracting the reference agonist's  $log(\tau/K_A)$  (usually the endogenous agonist). The same reference agonist should be used for the different pathways tested. For each agonist,  $\Delta \Delta log(\tau/K_A)$  values are calculated by subtracting  $\Delta log(\tau/K_A)$  for pathway I with the corresponding  $\Delta log(\tau/K_A)$  for pathway II. Bias is quantified as  $10^{\Delta \Delta log(\tau/K_A)}$ . If the value is 1, the agonist has no bias at all; if the value is larger than 1, it is biased towards pathway I; otherwise, it is biased towards pathway II.

- Step 1: dose-responses for 2 or more pathways to determine 'transduction coefficient'  $Log(\tau/K_A)$  values for each ligand at each pathway;
- Step 2: calculate transduction coefficient difference  $\Delta Log(\tau/K_A)$  between different ligands in the same pathway by subtracting transduction coefficient of the tested sample from that of the reference, usually endogenous, ligand, such as 5-HT for serotonin receptors;

$$\Delta Log\left(\frac{\tau}{K_A}\right) = Log\left(\frac{\tau}{K_A}\right) of \ sample - \ Log\left(\frac{\tau}{K_A}\right) of \ reference$$

Step 3: calculate transduction coefficient difference  $\Delta\Delta Log(\tau/K_A)$  between the different pathways for the same tested ligand by subtracting the  $\Delta Log(\tau/K_A)$  for one pathway from that of the other pathway;

$$\Delta \Delta Log\left(\frac{\tau}{K_A}\right) = \Delta Log\left(\frac{\tau_1}{K_{A1}}\right) - \Delta Log\left(\frac{\tau_2}{K_{A2}}\right)$$

Step 4: calculate bias factor as below:

$$Bias = 10^{\Delta \Delta log(\frac{\tau}{K_A})}$$

Step 5: to determine if the calculated bias is statistically significant, a statistical analysis is done with  $\Delta\Delta \text{Log}(\tau/K_A)$  values. In addition to the comprehensive methods to estimate SEM values as outlined by Kenakin (137), an alternative (and simpler) method to estimate SEM values is given below, as suggested by Christopoulos et al. (138).

To calculate sem for  $\Delta \log(\tau/K_A)$ :

$$SEM = \sqrt{Sample\ sem^2 + Reference\ sem^2}$$

To calculate sem for  $\Delta\Delta \log(\tau/K_A)$ :

$$SEM = \sqrt{pathway I sem^2 + pathway II sem^2}$$

**2.3.5.** Allosteric operational analysis (see Figure 44 on p. 175 for an example). For ligands with allosteric modulator activity, we apply the allosteric operational model to analyze functional results. The functional assay is carried out in the same way as for Schild plot analysis (**Secton 2.3.3**), in which the orthosteric agonist dose-response is measured in the absence and presence of increasing concentrations of a potential allosteric modulator. Results are then analyzed with the following equation as described by Leach et al., 2007 (139).

$$Effect = Basal + \frac{(E_{Max} - Basal)\left(\tau_A[A](K_B + \alpha\beta[B]) + \tau_A[B]K_A\right)^n}{([A]K_B + K_AK_B + K_A[B] + \alpha[A][B])^n + (\tau_A[A](K_B + \alpha\beta[B]) + \tau_B[B]K_A)^n}$$

In which *Effect* is the measured functional readout in the presence of the orthosteric agonist [A] and the allosteric modulator [B];  $E_{max}$  is the maximal possible system activity;  $K_A$  and  $K_B$  are the equilibrium binding affinity for the orthosteric agonist (A) and the allosteric modulator (B), respectively;  $\alpha$  and  $\beta$  are the allosteric effects on ligand binding (mutual effect between A and B) and agonist efficacy (with  $\alpha = 1$  for neutral cooperativity;  $\alpha > 1$  for positive cooperativity;  $\alpha < 1$  for negative cooperativity);  $\tau_A$  and  $\tau_B$  are the capacity of the orthosteric agonist (A) and the allosteric ligand (B) to exhibit agonism, respectively;  $\mathbf{n}$  is a slope fitting factor.

When doing non-linear least-square regression curve-fitting in Prism v5.0, the  $E_{max}$  values should be shared for all assays carried out under the same conditions, and should be set to a fixed value which is the maximal system efficacy.  $K_A$  should be the equilibrium binding affinity and can be estimated by a radioligand binding assay. If the tested allosteric modulator itself has no agonist activity, then  $\tau_B = 0$ . See **Figure 41** on p. 148 for a representative figure.

### 2.3.6. List of different functional assays PDSP carries out routinely:

- Calcium mobilization assay with FLIPR<sup>TETRA</sup> for G<sub>q</sub> coupled GPCRs.
- Intracellular inositol phosphate accumulation assay.
- Split luciferase-based biosensor cAMP assay for G<sub>i</sub> or G<sub>s</sub> coupled GPCRs.
- GPCR Tango assay for G-protein independent ß-arrestin translocation.
- PRESTO-Tango GPCRome screening
- FluxOR assay for hERG potassium channel function.
- PatchXpress automated patch clamp assay for hERG potassium channels.
- Neurotransmitter transporter assays for DAT, NET, and SERT.
- <sup>86</sup>Rb<sup>+</sup> efflux assays for nAChRs
- Multidrug resistance transporter-1 (MDR-1) assay
- Enzyme activity assays
  - o HDAC assay
  - o MAO A and B assay
  - PKC assay
  - CHK2 assay
- Nicotinic acetylcholine receptors (nAChRs) activity assay (86Rb+ efflux)

# 2.4. Functional assays for G<sub>q</sub> coupled GPCRs

#### 2.4.1. Calcium mobilization assays (with FLIPRTETRA)

Main equipment: FLIPR<sup>TETRA</sup> from Molecular Devices (Sunnyvale, CA)

Main reagents: Fluo-4 Direct® from Invitrogen (Carlsbad, CA)

FLIPR Drug buffer: 20 mM HEPES, 1x HBSS, 2.5 mM Probenecid, pH 7.40, room temperature

**2.4.1.1. Cell culture**: Cells, either stably expressing target receptors or transiently transfected with target receptor DNA (see below for transfection protocol) are grown overnight, and then plated into Poly-L-Lysine (PLL) coated 384-well black clear bottom cell culture plates with DMEM supplemented with 1% dialyzed FBS (dFBS) and at density of 15-20K cells in a volume  $40~\mu$ l per well. The plates are cultured for a minimum of 6 hours, or overnight, before assays.

**2.4.1.2.** Calcium Precipitation transfection: The calcium phosphate transfection method (1, 140, 141) is used for most transfections in PDSP assays, mainly with HEK 293T cells. HEK 293T cells are subcultured into either 10-cm dishes (3 million cells per dish) or 15-cm dishes (8 million cells per dish) and incubated overnight. Alternatively, HEK 293T cells are seeded at density of 6 million per 10-cm dish 4 hours prior to transfection. For each 10-cm dish of HEK 293T cells, 10  $\mu$ g receptor DNA construct in 440  $\mu$ l distilled water is mixed with 60  $\mu$ l of 2 M CaCl<sub>2</sub>; the DNA/CaCl<sub>2</sub> solution is then added dropwise into 500  $\mu$ l 2x HBS solution (50 mM HEPES, 280 mM NaCl, 10 mM KCl, 1.5 mM Na<sub>2</sub>HPO<sub>4</sub>, pH 7.00) while shaking. The mixture is incubated at room temperature for 10 min, then added to cells dropwise, which are then incubated overnight. For transfections in 15-cm dishes, reagents and DNA amounts are increased by 2.5 fold per dish.

**2.4.1.3. Calcium mobilization assays with FLIPR**<sup>TETRA</sup>. The protocol for calcium release assays with the FLIPR<sup>TETRA</sup> is modified from previously published procedures (142, 143). On the day of assay, medium is removed and cells are loaded with 20  $\mu$ l/well of 1x Fluo-4 Direct Calcium dye (prepared in FLIPR drug buffer). Plates are incubated for 60 min at 37°C, followed by 10 min incubation at room temperature in the dark, and then loaded into the FLIPR. The FLIPR is programmed to take 10

readings (1 read per second) initially as a baseline before addition of 10 µl of 3x drug solutions. The fluorescence intensity is recorded for 2 minutes after drug addition (first addition, see 384-well drug plate maps #1 and #2 for detailed setup) for agonist activity. To measure antagonist activity, drug stocks are prepared at 4x final concentration, added as above for potential effects on basal levels for 2 minutes first, followed by a 10 min incubation before addition of 10 µl of 4x of reference agonist at final concentration equal to the EC<sub>80</sub> (see 384-well drug plate map #3) to measure remaining agonist activity. To detect positive allosteric modulator activity, the second addition is a 4x concentration of reference agonist at final concentration equal to the EC<sub>20</sub> (usually endogenous agonist, see 384-well drug plate map #3) to determine effects on agonist activity. The EC<sub>20</sub> or EC<sub>80</sub> concentrations are predetermined separately using the same batch of transfected cells. Before the second and/or third additions, FLIPR is programmed to wash tips, first with 10% EtOH, and then with distilled water while recording fluorescence intensity. The incubation time between each addition can be adjusted accordingly to accommodate any preincubation requirements.

**2.4.1.4. Schild analysis:** To further examine antagonist activity at a particular receptor, we also carry out agonist dose-response studies in the absence and presence of 7 concentrations of selected PDSP compounds. In brief, cell plates are prepared in the same way as for primary or secondary functional assays using PLL-coated 384-well black clear bottom cell culture plates with DMEM + 1% dFBS for a minimum of 6 hours, or overnight. Selected antagonist drug plates are prepared as shown in the above 384-well drug map #6, and are used for the first addition to determine if the testing drug has any effect on basal levels. Reference agonist drug plates are prepared as shown in above 384-well drug map #7, and are used for the second addition to measure effect of antagonist on remaining agonist activity.

**2.4.1.5. FLIPR data processing**: In calcium mobilization assays with the FLIPR<sup>TETRA</sup>, every well of the 384-well plate has its own basal activity, defined as the average value of the 10 readings before corresponding drug addition. We take maximal fluorescence intensity readings (RFU, Relative Fluorescence Units) within a minute after drug addition as the agonist activity and these values are exported in the format of "fold of basal" using FLIPR's ScreenWorks® built-in batch export function. Normalization, when needed, is carried out using Prism's built-in normalization function, in which

basal is transformed to 0% and the Emax of the reference agonist in the same assay plate is transformed to 100%.

#### 2.4.2. Intracellular inositol phosphate accumulation for Gq coupled GPCRs

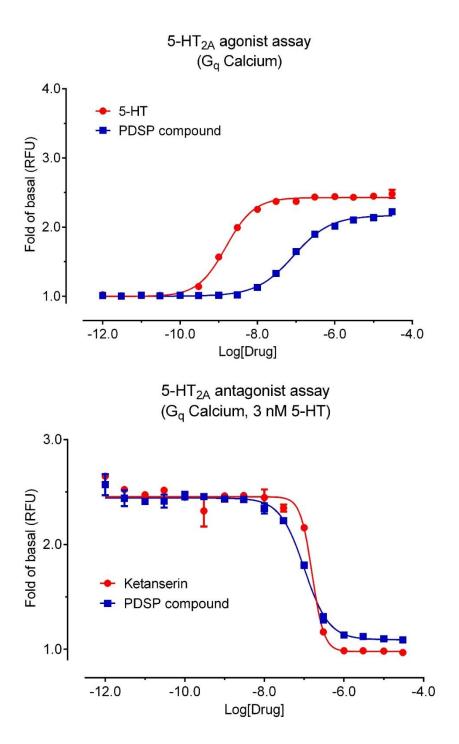
**2.4.2.1.** Primary screening assays – Single concentration and data analysis: Each new compound is tested on all receptors at a single concentration ( $10 \mu M$ ) for activity as an agonist or an antagonist. Testing for antagonism is performed in presence of the EC<sub>50</sub> concentration of a typical agonist (as described above). Each compound is tested in duplicate in two separate experiments performed on different lots of cells. In addition to the tested compounds, each 96-well plate contains wells for determination of basal activity, maximal agonist stimulation, agonist EC<sub>50</sub> concentrations (i.e., concentration-response isotherm), and the IC<sub>50</sub> concentration of a known antagonist for purposes of positive control and for activity calculations. The reported results for each compound are calculated for agonists as the % of maximal activity (as obtained with maximal agonist concentrations) and for antagonist as the percent of inhibition of receptor activity (in presence of an EC<sub>50</sub> concentration of the agonist). Results are expressed as means  $\pm$  SEM from four replicates.

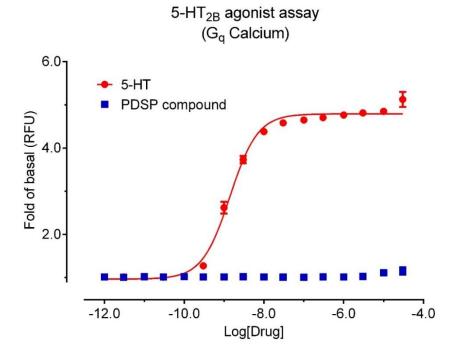
**2.4.2.2. Secondary screening assays: Dose-responses and data analysis.** Compounds determined to be active as agonists or antagonists may be tested for their potency in concentration-response experiments. Six-point concentration-response curves are done in duplicate twice on two separate lots of cells (somethimes a third curve may be needed if, in the first experiment, the range of concentrations used is outside of the active range). For antagonists, these curves are performed in the presence of the EC<sub>50</sub> concentration of the agonist. For each compound, the results from four replicates are averaged, and then either EC<sub>50</sub> or IC<sub>50</sub> values are calculated by non-linear regression using the 4-parameter logistic equation as indicated in **Section 2.3**. Results are reported as EC<sub>50</sub> or IC<sub>50</sub> values for each tested compound (and receptor), and also include the EC<sub>50</sub> or IC<sub>50</sub> values of a known agonist or antagonist for comparison purposes.

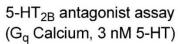


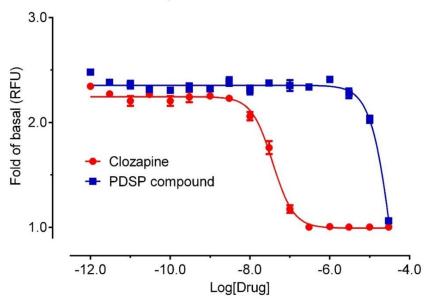
**Table 27**. List of GPCRs for which the PDSP has validated  $G_q$  protein mediated calcium mobilization or inositol phosphate (IP) accumulation assays, and their pharmacological parameters. The PDSP will also develop additional calcium mobilization assays for other GPCRs upon request and approval. Assays are carried out according to the above procedures and results are analyzed in Prism. Representative results are from single assays done either in triplicate or quadruplicate.

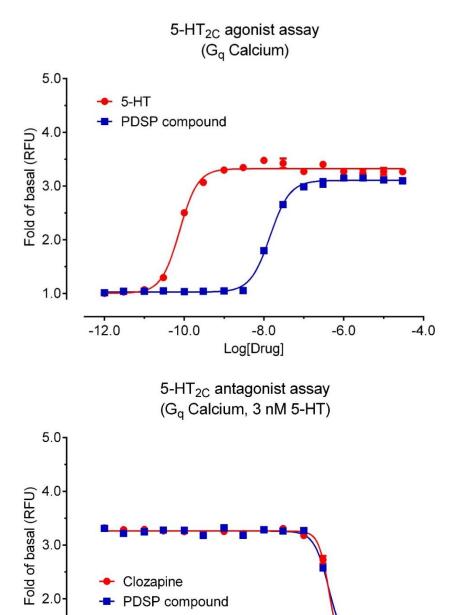
| Receptor               | Cell line       | Ligands *              | Emax   | pEC <sub>50</sub> (EC <sub>50</sub> nM) | Hill slope |
|------------------------|-----------------|------------------------|--------|-----------------------------------------|------------|
|                        |                 | (references)           | (fold) | pIC <sub>50</sub> (IC <sub>50</sub> nM) |            |
| $M_1$                  | СНО             | Acetylcholine          | 3.4    | 8.69 (2.1)                              | 1.58       |
| M <sub>1</sub> D       | СНО             | CNO (37)               | 1.5    | 7.66 (21.8)                             | 0.84       |
| M <sub>3</sub>         | СНО             | Acetylcholine          | 2.8    | 8.91 (1.2)                              | 0.95       |
| M <sub>3</sub> D       | Flp-In CHO      | CNO                    | 2.7    | 7.44 (36.1)                             | 1.01       |
| M <sub>5</sub>         | СНО             | Acetylcholine          | 3.4    | 8.25 (5.6)                              | 1.03       |
| M <sub>5</sub> D       | СНО             | CNO                    | 2.1    | 7.44 (36.5)                             | 0.82       |
| 5-HT <sub>2A</sub>     | Flp-In HEK      | 5-HT                   | 2.4    | 8.82 (1.5)                              | 1.19       |
|                        |                 | Ketanserin             | 2.5    | 6.80 (159)                              | -2.92      |
| - UT                   | El. I. UEV      | (antagonist)           | 4.0    | 0.05 (4.4)                              | 4.25       |
| 5-HT <sub>2B</sub>     | Flp-In HEK      | 5-HT                   | 4.8    | 8.85 (1.4)                              | 1.25       |
|                        |                 | Clozapine (antagonist) | 2.3    | 7.43 (37.1)                             | -1.65      |
| 5-HT <sub>2C</sub> INI | Flp-In HEK      | 5-HT                   | 3.3    | 10.11 (0.7)                             | 1.89       |
|                        | -               | Clozapine              | 3.3    | 6.37 (432)                              | -3.31      |
| E LIE VANA             | EL LUEIX        | (antagonist)           | 2.5    | 0.36 (0.5)                              | 4.52       |
| 5-HT <sub>2C</sub> VNV | Flp-In HEK      | 5-HT                   | 2.5    | 9.26 (0.5)                              | 1.53       |
| 5-HT <sub>2C</sub> VSV | Flp-In HEK      | 5-HT                   | 5.7    | 9.08 (0.8)                              | 1.87       |
| α <sub>1A</sub>        | Fibroblast, rat | Norepinephrine         | 2.3    | 8.34 (4.5)                              | 1.89       |
| α <sub>1B</sub>        | Fibroblast, rat | Norepinephrine         | 1.6    | 8.76 (1.7)                              | 0.86       |
| $lpha_{	exttt{1D}}$    | Fibroblast, rat | Norepinephrine         | 4.1    | 8.61 (2.4)                              | 1.14       |
| AT <sub>1A</sub>       | HEK             | Angiotensin II         | 1.8    | 9.39 (0.4)                              | 0.72       |
| BB <sub>1</sub>        | HEK T           | Bombesin               | 5.6    | 7.82 (15.3)                             | 1.36       |
|                        |                 | BIM 187                | 5.7    | 7.21 (61.1)                             | 1.73       |
|                        |                 | Neuromedin B           | 5.5    | 8.40 (4.0)                              | 1.40       |
| BB <sub>2</sub>        | HEK T           | Bombesin               | 4.4    | 8.76 (1.7)                              | 0.67       |
|                        |                 | BIM 187 (144)          | 4.7    | 8.49 (3.3)                              | 0.95       |
|                        |                 | Neuromedin B           | 4.6    | 6.58 (262)                              | 1.29       |
| B <sub>2</sub>         | HEK T           | Bradykinin             | 1.7    | 9.57 (0.3)                              | 0.88       |
| CCK <sub>1</sub>       | HEK T           | Gastrin                | 4.1    | 9.83 (0.15)                             | 1.29       |
| CCK <sub>2</sub>       | HEK T           | Gastrin                | 4.2    | 9.84 (0.14)                             | 1.17       |
| Ghrelin                | HEK             | L-692,585              | 1.7    | 9.05 (0.9)                              | 0.80       |


| Receptor          | Cell line   | Ligands *          | Emax   | pEC <sub>50</sub> (EC <sub>50</sub> nM) | Hill slope |  |
|-------------------|-------------|--------------------|--------|-----------------------------------------|------------|--|
| •                 |             | (references)       | (fold) | pIC <sub>50</sub> (IC <sub>50</sub> nM) |            |  |
| H <sub>1</sub>    | HEK         | Histamine          | 2.4    | 7.77 (16.9)                             | 1.22       |  |
| H <sub>2</sub>    | HEK T       | Histamine          | 1.5    | 6.24 (577)                              | 1.42       |  |
| mGlu <sub>1</sub> | HEK         | L-Glutamate        | 3.8    | 6.02 (964)                              | 2.20       |  |
|                   |             | FTIDC (antagonist) | 3.6    | 7.93 (11.7)                             | -1.82      |  |
| mGlu₅             | HEK         | L-Glutamate        | 2.3    | 5.89 (1397)                             | 2.27       |  |
|                   |             | MTEP (antagonist)  | 2.3    | 8.03 (9.4)                              | -0.63      |  |
| NK <sub>1</sub>   | HEK         | Substance P        | 2.7    | 7.64 (22.8)                             | 0.79       |  |
| NK <sub>2</sub>   | HEK         | Neurokinin A       | 4.7    | 7.56 (27.6)                             | 0.66       |  |
| NK <sub>2</sub>   | HEK         | Neurokinin B       | 4.4    | 6.90 (123)                              | 0.79       |  |
| NK <sub>3</sub>   | HEK         | Neurokinin B       | 4.0    | 8.41 (3.9)                              | 0.83       |  |
| NTS <sub>1</sub>  | HEK         | Neurotensin        | 3.5    | 7.99 (10.1)                             | 0.78       |  |
|                   |             | JMV-449 (145)      | 3.5    | 8.76 (1.8)                              | 0.93       |  |
| P2Y <sub>1</sub>  | 1321N1      | ADP                | 3.1    | 6.65 (226)                              | 1.31       |  |
|                   |             | UTP                | 2.0    | 5.94 (1140)                             | 1.10       |  |
| P2Y <sub>2</sub>  | 1321N1      | ATP                | 2.1    | 6.88 (132)                              | 1.26       |  |
| 2                 |             | ADP                | 2.1    | 5.48 (3306)                             | 1.59       |  |
|                   |             | UTP                | 1.9    | 8.03 (9.5)                              | 1.54       |  |
|                   |             | UDP                | 1.9    | 5.47 (3400)                             | 1.50       |  |
| P2Y <sub>4</sub>  | 1321N1      | UTP                | 2.4    | 7.65 (22.3)                             | 1.60       |  |
|                   |             | UDP                | 2.4    | 5.22 (6088)                             | 1.63       |  |
| P2Y <sub>6</sub>  | 1321N1      | ATP                | 1.7    | 4.59 (25470)                            | 3.17       |  |
| PZY6              |             | ADP                | 3.5    | 5.26 (5517)                             | 2.04       |  |
|                   |             | UTP                | 3.6    | 7.33 (46.8)                             | 1.22       |  |
| P2Y <sub>11</sub> | 1321N1      | ATP                | 3.6    | 5.70 (2009)                             | 1.78       |  |
|                   |             | UTP                | 1.9    | 5.80 (1579)                             | 1.12       |  |
| PAR1              | KOLF, mouse | TRAP               | 3.9    | 6.86 (138)                              | 1.17       |  |
| PAF               | HEK         | PTAF               | 1.9    | 8.06 (87.4)                             | 0.65       |  |
| V <sub>1A</sub>   | СНО         | Vasopressin        | 3.7    | 8.09 (8.1)                              | 0.77       |  |
|                   |             | Oxytocin           | 3.2    | 5.66 (2193)                             | 1.55       |  |
| $V_{1B}$          | СНО         | Vasopressin        | 3.3    | 8.20 (6.3)                              | 0.99       |  |
|                   |             | Oxytocin           | 3.1    | 5.42 (3849)                             | 2.03       |  |
| V <sub>2</sub>    | СНО         | Vasopressin        | 2.7    | 7.42 (38.2)                             | 1.57       |  |
| ОТ                | СНО         | Oxytocin           | 3.1    | 7.29 (51.0)                             | 1.21       |  |
| GPR39             | HEK T       | GPR39-C3 (146-148) | 1.4    | 6.08 (83.1)                             | 2.72       |  |
| GPR40             | HEK T       | GW9508 (149, 150)  | 1.6    | 6.53 (294)                              | 0.54       |  |
|                   |             | AS2034178 (151)    | 1.6    | 5.85 (1423)                             | 0.72       |  |
|                   |             | AM4668 (152)       | 1.7    | 6.93 (118)                              | 0.42       |  |
| GPR41             | HEK T       | Propionate         | 4.1    | 7.18                                    |            |  |
| GPR43             | HEK T       | Propionate         |        | 6.43                                    |            |  |


| Receptor | Cell line  | Ligands * (references) | Emax<br>(fold) | pEC <sub>50</sub> (EC <sub>50</sub> nM)<br>pIC <sub>50</sub> (IC <sub>50</sub> nM) | Hill slope |
|----------|------------|------------------------|----------------|------------------------------------------------------------------------------------|------------|
| MRGPRX2  | Flp-In HEK | TAN-67 (153)           | 4.5            | 6.25 (557)                                                                         | 1.02       |
| MRGPRX4  | Flp-In HEK | Nateglinide (154)      | 4.3            | 5.66 (2208)                                                                        | 3.00       |


# Notes


<sup>\*:</sup> Reference antagonist in antagonist assays is indicated individually


**Figure 39**. Representative dose-response curves of calcium mobilization for  $G_q$ -coupled GPCRs, obtained from the FLIPR<sup>TETRA</sup>. Some curves are presented after normalization with reference agonist activity as 100% and basal as 0%.









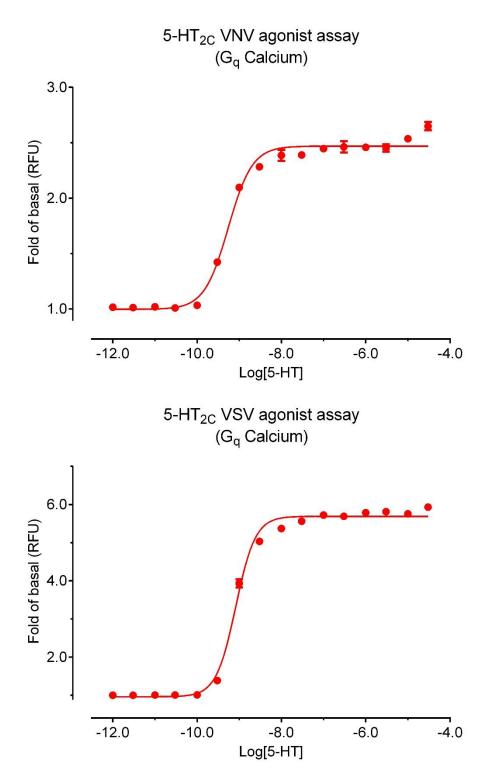


Clozapine

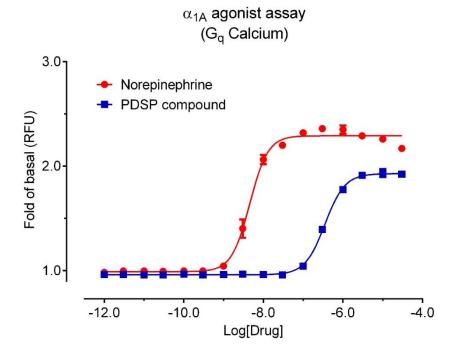
1.0

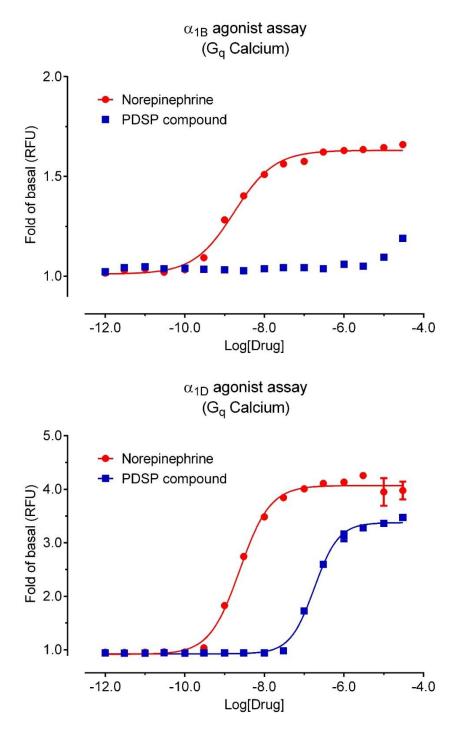
-12.0

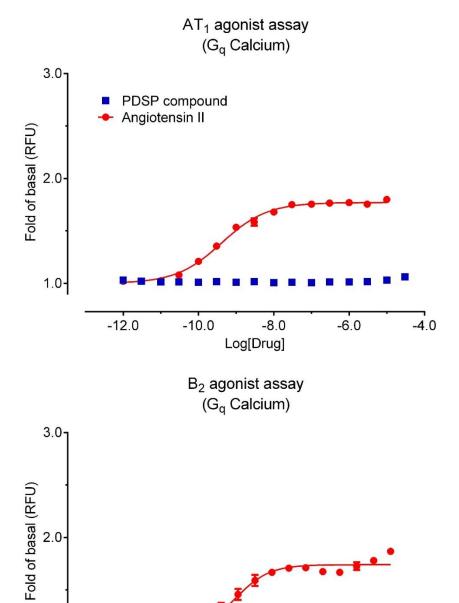
PDSP compound


-10.0

-8.0


Log[Drug]


-6.0


**-4**.0







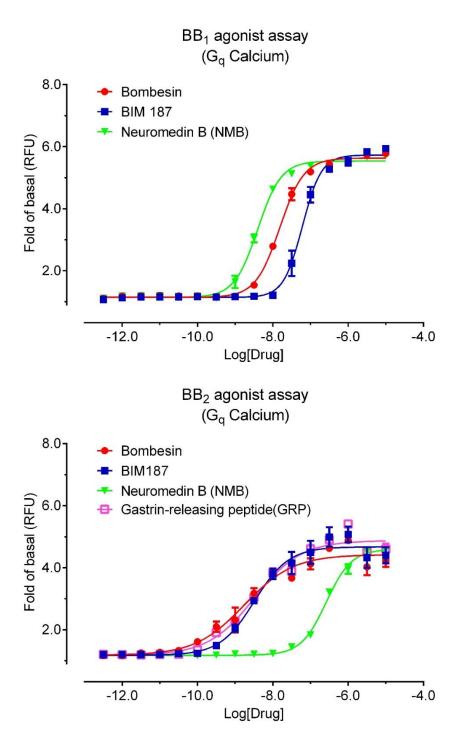


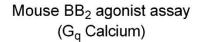


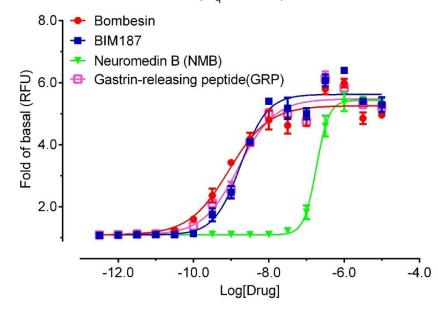
-10.0

Log[Bradykinin]

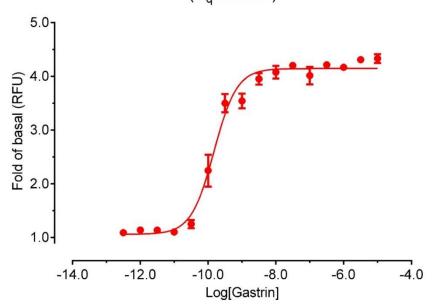
-8.0

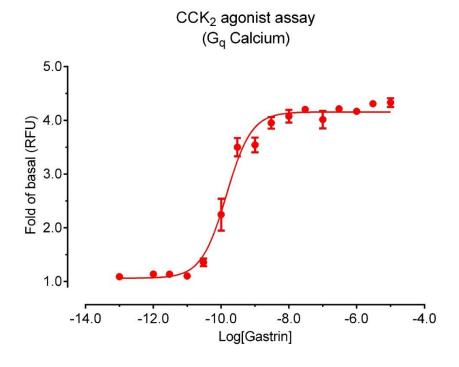

-4.0

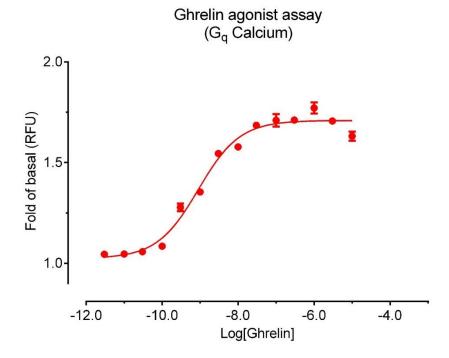

-6.0

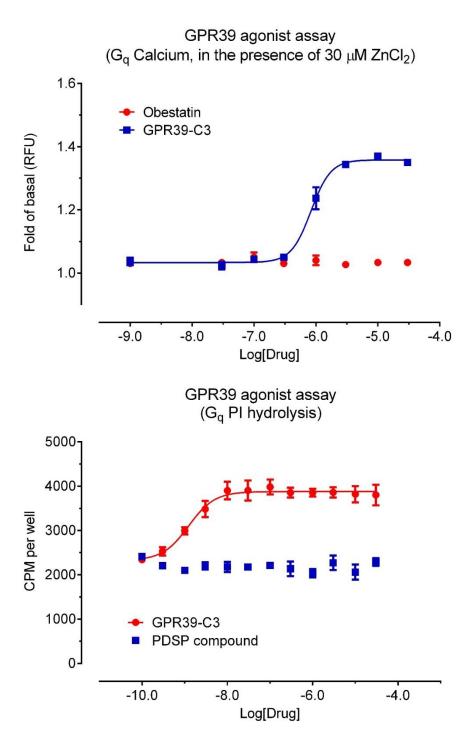

1.0-

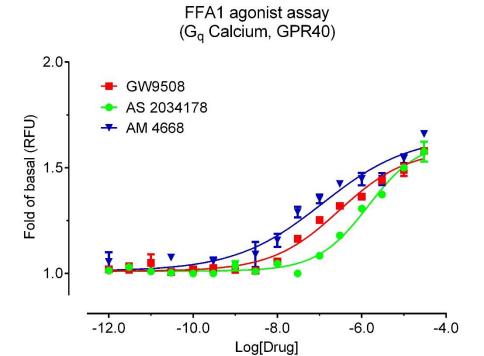
-14.0


-12.0

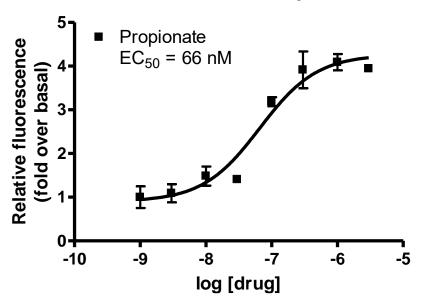


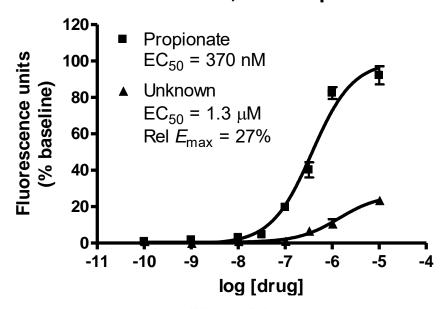





# CCK<sub>1</sub> agonist assay (G<sub>q</sub> Calcium)

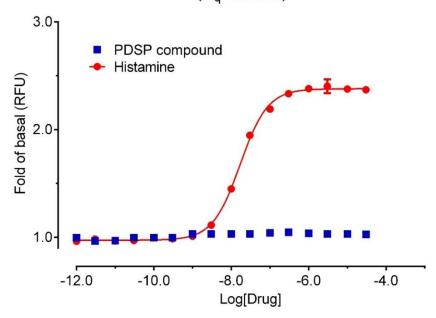


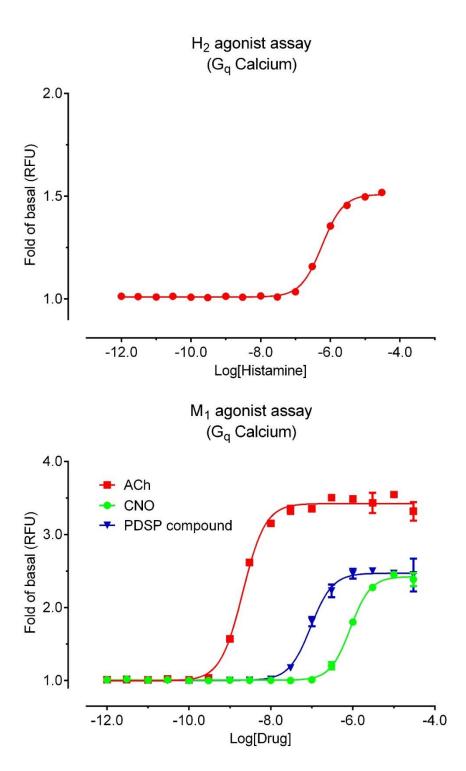


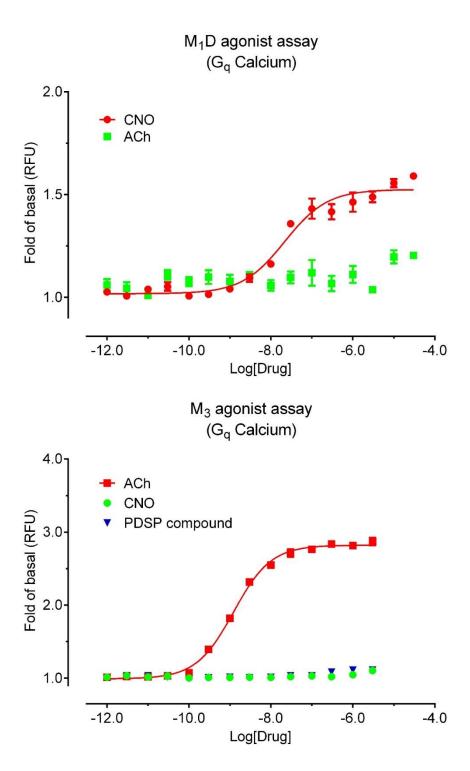


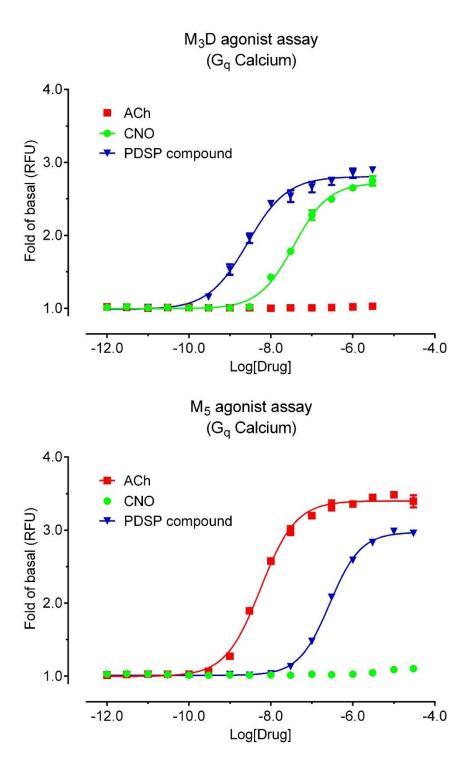



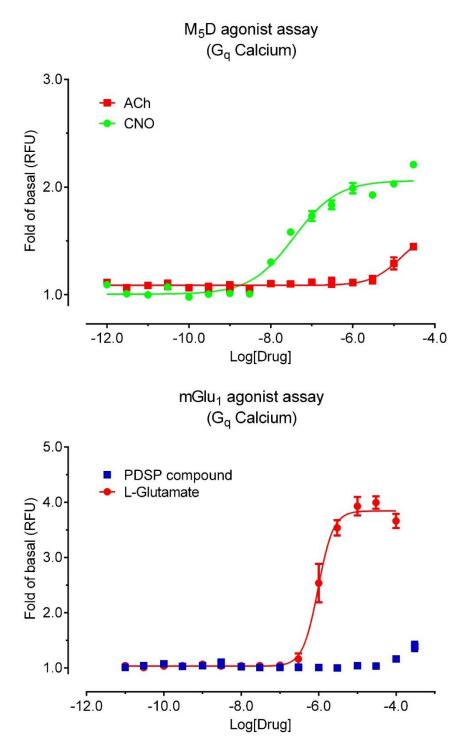


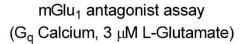


GPR41 Receptor
Hank's Balanced Salt Solution,
20 mM HEPES, 2.5 mM probenecid

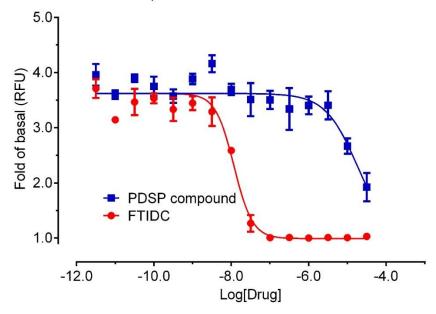




### GPR43 Receptor Hank's Balanced Salt Solution, 20 mM HEPES, 2.5 mM probenecid

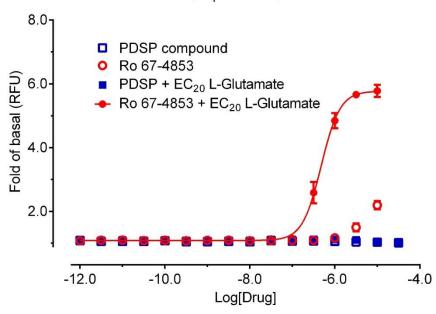


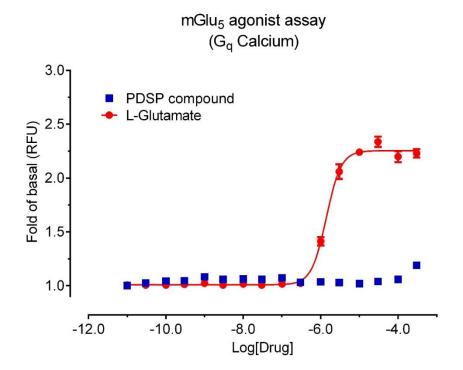


H<sub>1</sub> agonist assay (G<sub>q</sub> Calcium)



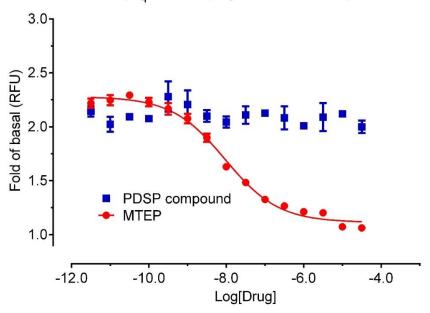


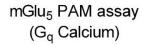



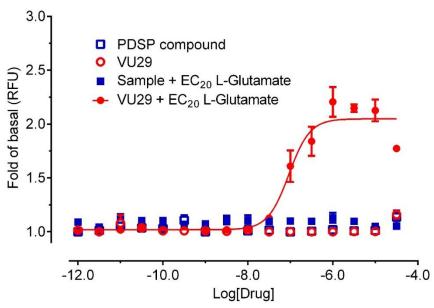





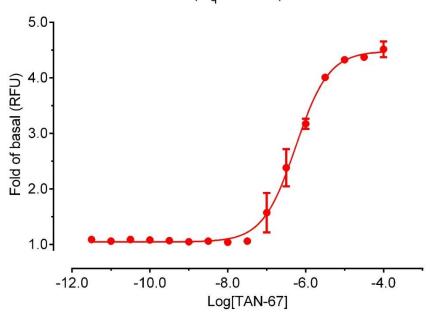




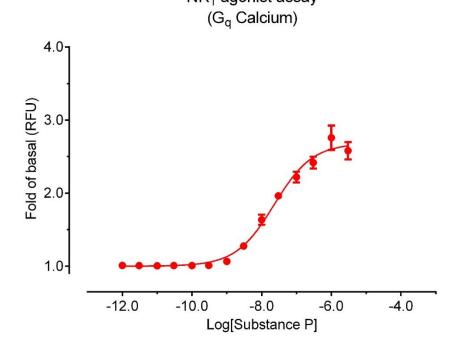


# $\begin{array}{c} \text{mGlu}_1 \text{ PAM assay} \\ \text{(G}_q \text{ Calcium)} \end{array}$

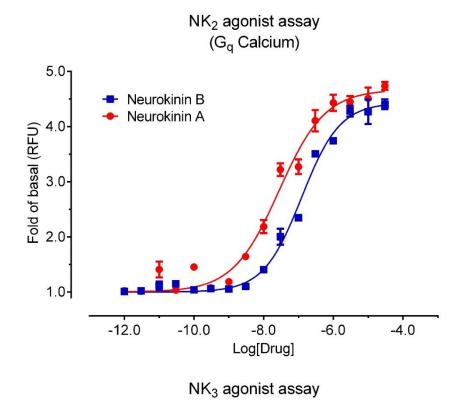


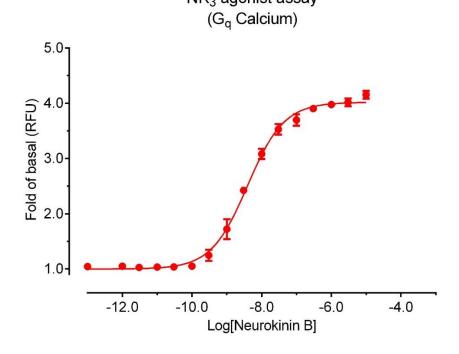


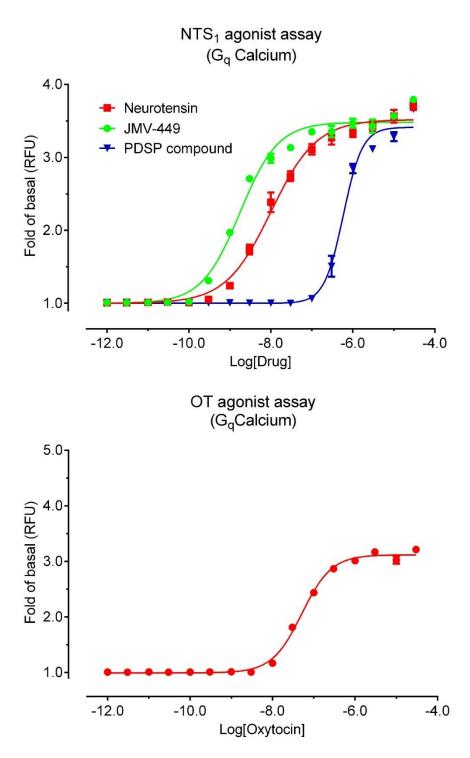



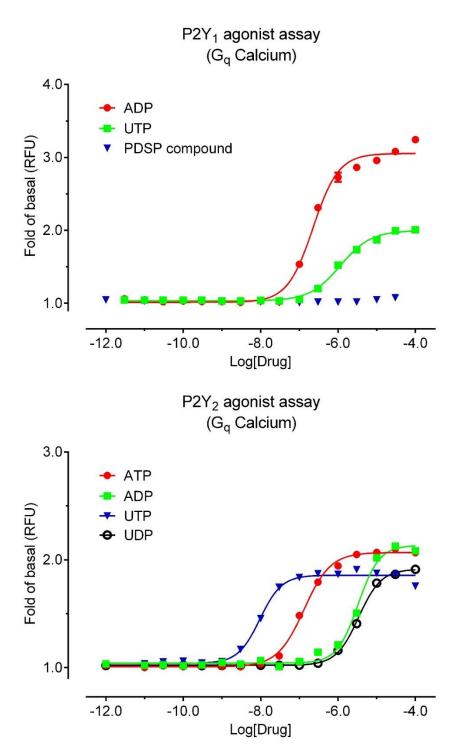


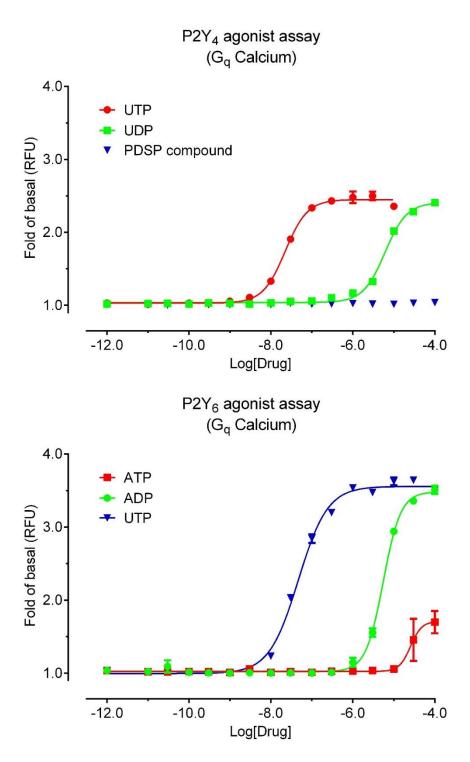



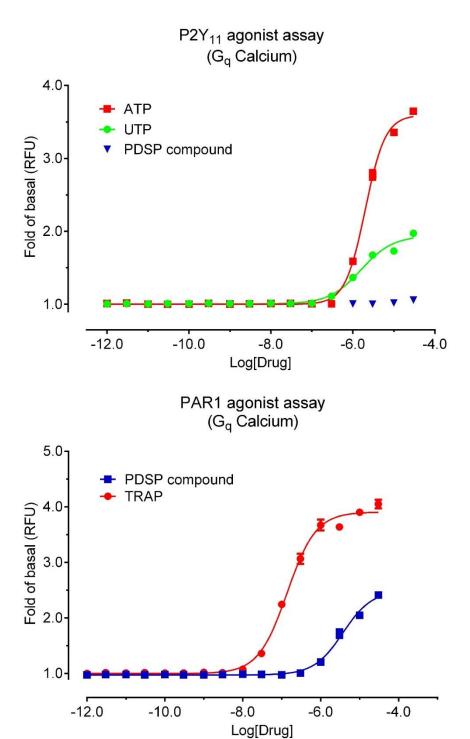



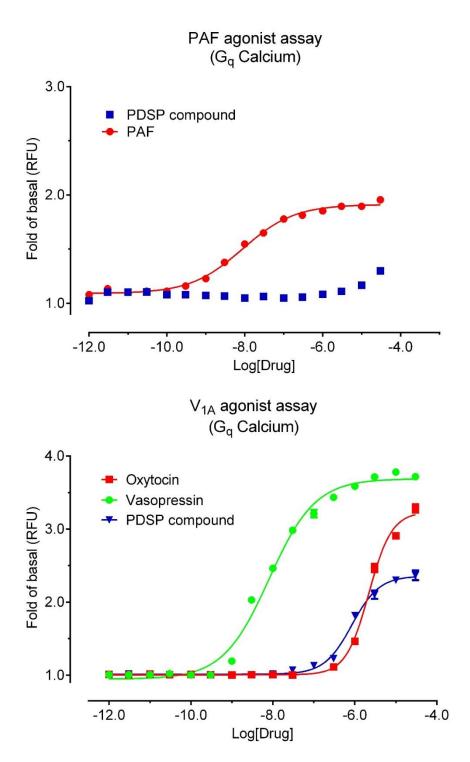


#### MRGPRX2 agonist assay (G<sub>q</sub> Calcium)

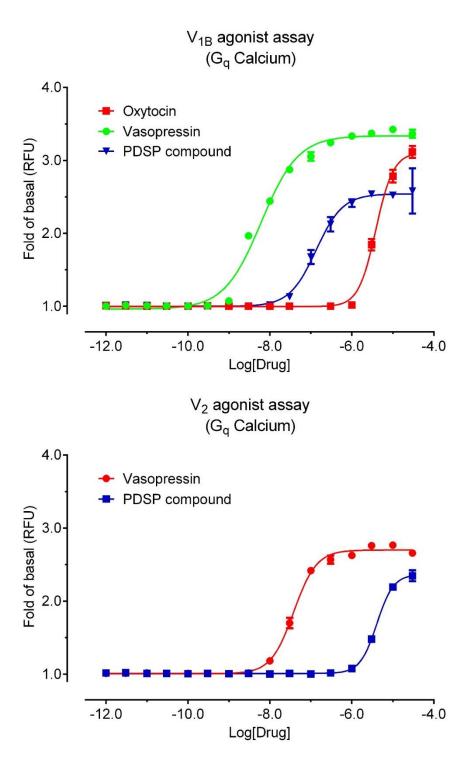


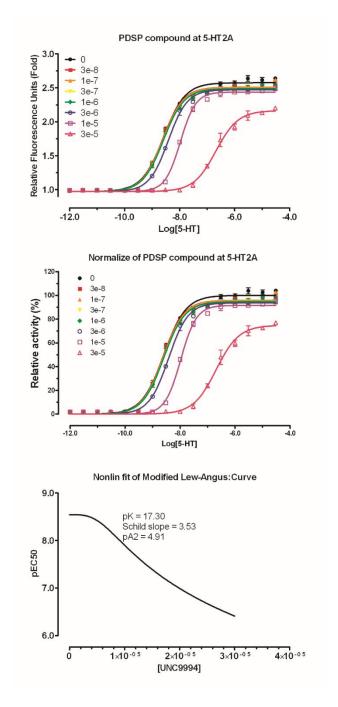



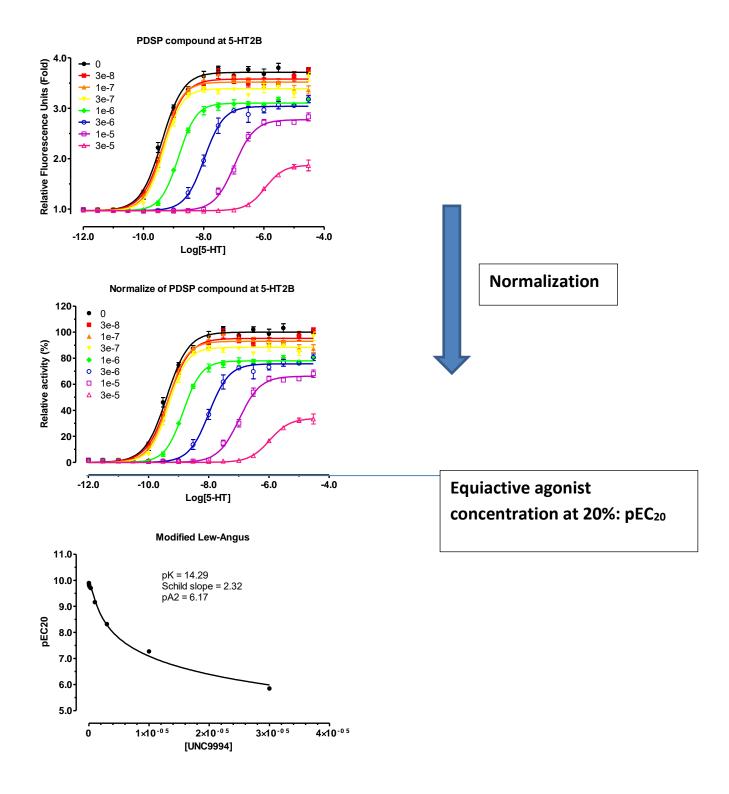



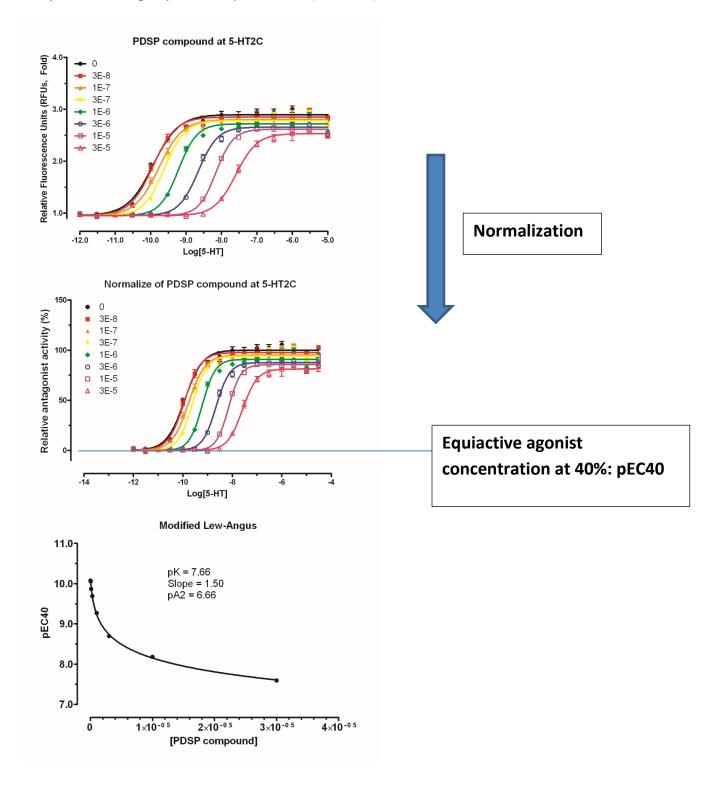


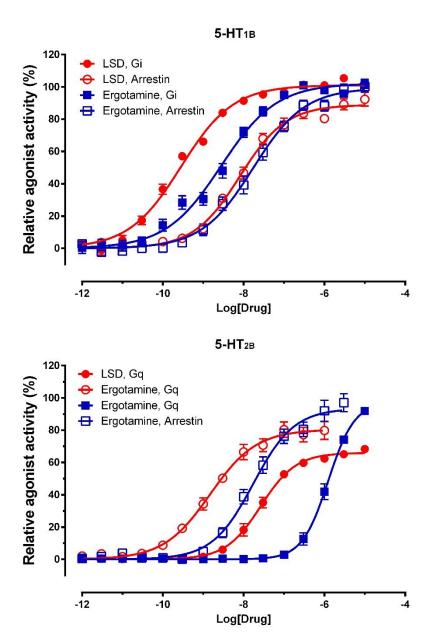






**Figure 40**. Schild analysis with a PDSP compound at 5-HT<sub>2A</sub> receptors ( $G_q$  Calcium, FLIPR). Results are analyzed according to published procedures (155–157).




**Figure 41**. Schild analysis of a PDSP compound at  $5-HT_{2B}$  receptors ( $G_q$  Calcium, FLIPR). Results are analyzed according to published procedures (155–157).



**Figure 42**. Schild analysis with a PDSP compound at 5-HT<sub>2C</sub> receptors ( $G_q$  Calcium, FLIPR). Results are analyzed according to published procedures (155–157).

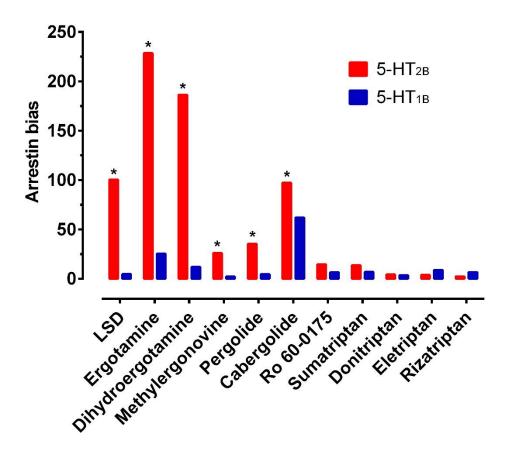


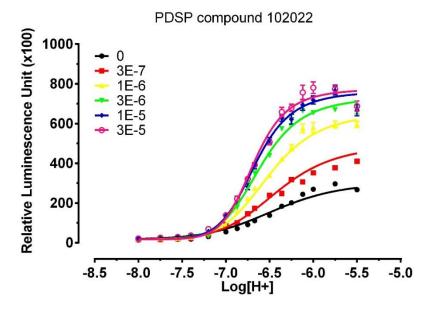
**Figure 43**. Representative figures for bias analysis. LSD and Ergotamine (ERG) agonist activity in  $G_i$  (for 5-HT<sub>1B</sub>) or  $G_q$  (for 5-HT<sub>2B</sub>) or  $G_q$ -arrestin signaling pathways were determined at 5-HT<sub>1B</sub> and 5-HT<sub>2B</sub> receptors as outlined in the functional assay section, and results were normalized to corresponding 5-HT activity and analyzed in Prism using Black and Leff operational model to estimate transduction coefficient, Log( $\tau/K_A$ ), as listed in the Table on the next page. Results are from published papers (142, 158) and modified for presentation here.



**Table 28**. Transduction coefficients,  $Log(\tau/K_A)$ , and bias factor calculations for indicated pathways of agonists at 5-HT<sub>1B</sub>. See representative dose-response curves in **Figure 43** on previous page. Bias factor =  $10^{\Delta\Delta Log(\tau/KA)}$ . Results are from published papers (142, 158) and are modified for presentation here.

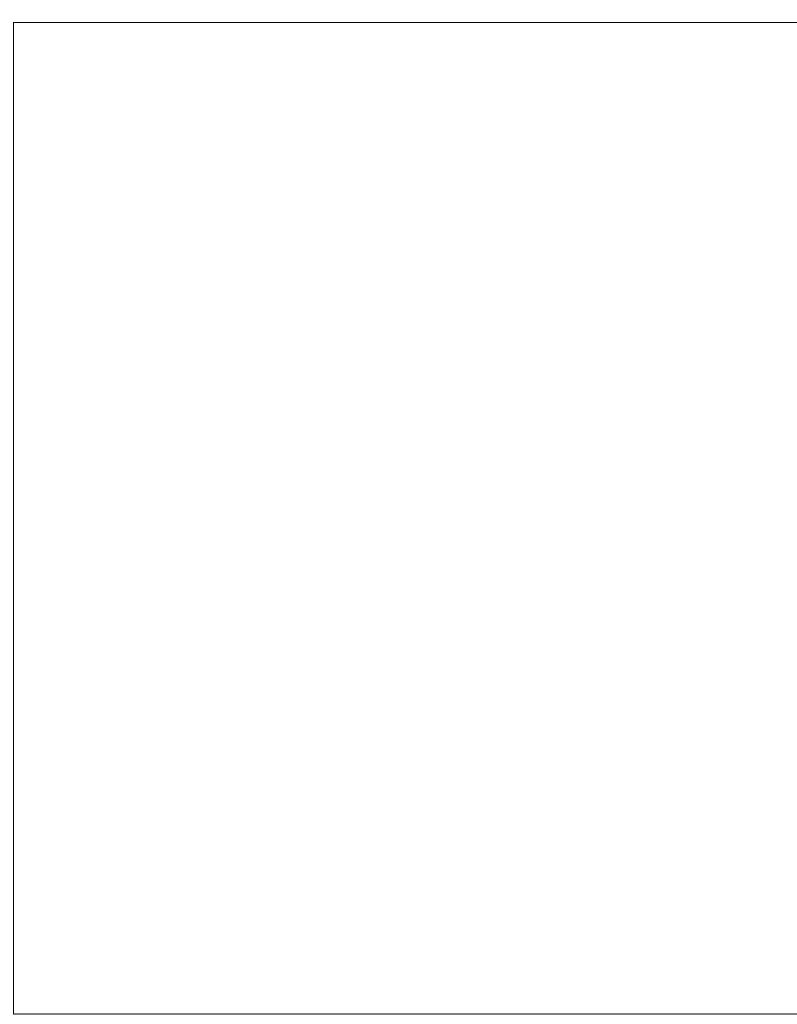
|             | Bias calculation at 5-HT <sub>1B</sub> receptors |                        |             |                        |                              |        |  |  |  |
|-------------|--------------------------------------------------|------------------------|-------------|------------------------|------------------------------|--------|--|--|--|
| Ligands     | G <sub>i</sub> pathway                           | $\Delta Log(\tau/K_A)$ | β-arrestin  | $\Delta Log(\tau/K_A)$ | $\Delta\Delta Log(\tau/K_A)$ | Bias   |  |  |  |
|             |                                                  |                        | pathway     |                        |                              | Factor |  |  |  |
| 5-HT        | 9.54 ± 0.08                                      | 0                      | 7.47 ± 0.13 | 0                      | 0                            | 1.0    |  |  |  |
| LSD         | 9.53 ± 0.09                                      | -0.01                  | 8.08 ± 0.29 | 0.61                   | 0.62                         | 4.2    |  |  |  |
| Ergotamine  | 8.53 ± 0.18                                      | -1.01                  | 7.82 ± 0.20 | 0.35                   | 1.36                         | 22.9   |  |  |  |
| DHE         | 8.89 ± 0.21                                      | -0.65                  | 7.87 ± 0.19 | 0.40                   | 1.05                         | 11.2   |  |  |  |
| MTE         | 9.41 ± 0.12                                      | -0.13                  | 7.72 ± 0.15 | 0.25                   | 0.38                         | 2.4    |  |  |  |
| Pergolide   | 7.82 ± 0.25                                      | -1.72                  | 6.41 ± 0.11 | -1.06                  | 0.66                         | 4.6    |  |  |  |
| Cabergoline | 6.58 ± 0.08                                      | -2.96                  | 6.32 ± 0.14 | -1.15                  | 1.81                         | 64.6   |  |  |  |
| Ro 60-0175  | 6.37 ± 0.35                                      | -3.17                  | 5.32 ± 0.53 | -2.15                  | 1.02                         | 10.5   |  |  |  |
| Sumatriptan | 8.16 ± 0.19                                      | -1.38                  | 6.94 ± 0.11 | -0.53                  | 0.85                         | 7.1    |  |  |  |
| Donitriptan | 9.51 ± 0.37                                      | -0.03                  | 8.13 ± 0.18 | 0.66                   | 0.69                         | 4.9    |  |  |  |
| Eletriptan  | 8.13 ± 0.29                                      | -1.41                  | 7.07 ± 0.29 | -0.40                  | 1.01                         | 10.2   |  |  |  |
| Rizatriptan | $7.80 \pm 0.43$                                  | -1.74                  | 6.63 ± 0.21 | -0.84                  | 0.90                         | 7.9    |  |  |  |


DHE = Dihydroergotamine; MTE = Methylergonovine


**Table 29**. Transduction coefficients,  $Log(\tau/K_A)$ , and bias factor calculation for indicated pathways of agonists at 5-HT<sub>2B</sub>. See representative dose-response curves in **Figure 43** on previous page. Results are from published papers (142, 158) and are modified for presentation here.

|             | Bias calculation at 5-HT <sub>2B</sub> receptors |                        |             |                        |                                              |        |  |  |  |
|-------------|--------------------------------------------------|------------------------|-------------|------------------------|----------------------------------------------|--------|--|--|--|
| Ligands     | G <sub>q</sub> pathway                           | $\Delta Log(\tau/K_A)$ | β-arrestin  | $\Delta Log(\tau/K_A)$ | $\Delta\Delta$ Log( $\tau$ /K <sub>A</sub> ) | Bias   |  |  |  |
|             |                                                  |                        | pathway     |                        |                                              | Factor |  |  |  |
| 5-HT        | 9.61 ± 0.05                                      | 0                      | 8.30 ± 0.09 | 0                      | 0                                            | 1.0    |  |  |  |
| LSD         | 7.63 ± 0.15                                      | -1.98                  | 8.38 ± 0.09 | 0.08                   | 2.06                                         | 114.8  |  |  |  |
| Ergotamine  | 5.95 ± 0.10                                      | -3.66                  | 7.05 ± 0.16 | -1.25                  | 2.41                                         | 257.0  |  |  |  |
| DHE         | 6.03 ± 0.07                                      | -3.58                  | 7.13 ± 0.33 | -1.17                  | 2.41                                         | 257.0  |  |  |  |
| MTE         | 7.93 ± 0.23                                      | -1.68                  | 8.05 ± 0.20 | -0.25                  | 1.43                                         | 26.9   |  |  |  |
| Pergolide   | 7.50 ± 0.22                                      | -2.11                  | 7.96 ± 0.08 | -0.34                  | 1.77                                         | 58.9   |  |  |  |
| Cabergoline | 6.92 ± 0.18                                      | -2.69                  | 7.76 ±0.22  | -0.54                  | 2.15                                         | 141.3  |  |  |  |
| Ro 60-0175  | 9.04 ± 0.15                                      | -0.57                  | 9.00 ± 0.10 | 0.7                    | 1.27                                         | 18.6   |  |  |  |
| Sumatriptan | 5.24 ± 0.12                                      | -4.37                  | 5.17 ± 0.89 | -3.13                  | 1.24                                         | 17.4   |  |  |  |
| Donitriptan | 6.65 ± 0.12                                      | -2.96                  | 5.92 ± 0.04 | -2.38                  | 0.58                                         | 3.8    |  |  |  |
| Eletriptan  | 6.17 ± 0.05                                      | -3.44                  | 5.41 ± 0.20 | -2.89                  | 0.55                                         | 3.5    |  |  |  |
| Rizatriptan | 5.86 ± 0.15                                      | -3.75                  | 5.03 ± 0.03 | -3.27                  | 0.48                                         | 3.0    |  |  |  |

DHE = Dihydroergotamine; MTE = Methylergonovine


**Figure 44**. Comparison of bias factors of various ligands at -HT<sub>1B</sub> and 5-HT<sub>2B</sub> receptors. Values are taken from **Tables 28 and 29** and **Figure 43**. \* indicates significant difference p < 0.0001 (two-way ANOVA). Results are from published papers (142, 158) and are modified for presentation here.





**Figure 44**. Representative curves for the allosteric operational model. GPR68-mediated cAMP production was determined in the absence and presence of increasing concentration of PDSP compound #102022. Results are analyzed using the allosteric operational model and best-fit values are listed in the following table. In the curve-fitting,  $Log(K_A)$  is set at -6.50 (equivalent to the pEC<sub>50</sub> value of protons in the absence of #102022), while the  $E_{max}$  is constrained to 800 (which is the maximum activity of the system);  $\tau_B$  is constrained to "0", since #102022 has no agonist activity by itself.

| [102022] M        | 0         | 3.00E-7   | 1.00E-6   | 3.00E-6   | 1.00E-5   | 3.00E-5   | Global (shared) |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------|
| Best-fit values   |           |           |           |           |           |           |                 |
| LogK <sub>A</sub> | (= -6.50) | (= -6.50) | (= -6.50) | (= -6.50) | (= -6.50) | (= -6.50) |                 |
| LogK <sub>B</sub> | -6.14     | -6.14     | -6.14     | -6.14     | -6.14     | -6.14     | -6.14           |
| Basal             | 16.32     | 16.32     | 16.32     | 16.32     | 16.32     | 16.32     | 16.32           |
| E <sub>max</sub>  | (=800)    | (=800)    | (=800)    | (=800)    | (=800)    | (=800)    |                 |
| τΑ                | 0.678     | 0.678     | 0.678     | 0.678     | 0.678     | 0.678     | 0.678           |
| α                 | 0.877     | 0.877     | 0.877     | 0.877     | 0.877     | 0.877     | 0.877           |
| β                 | 4.055     | 4.055     | 4.055     | 4.055     | 4.055     | 4.055     | 4.055           |
| В                 | = 0.0     | 3.00E-07  | 1.00E-06  | 3.00E-06  | 1.00E-05  | 3.00E-05  |                 |
| τв                | = 0.0     | = 0.0     | = 0.0     | = 0.0     | = 0.0     | = 0.0     |                 |
| n                 | 1.443     | 1.993     | 2.441     | 2.799     | 3.116     | 3.451     |                 |



#### 2.5. Functional assays for G<sub>i</sub> or G<sub>s</sub> coupled GPCRs - Split luciferase cAMP assay

Main equipment: luminescence counter

Reagents: GloSensor cAMP construct from Promega and Luciferin

Assay buffer: 20 mM HEPES, 1x HBSS, pH 7.40

**2.5.1. Cell culture and transfection**: To determine  $G_i$  or  $G_s$  GPCR-mediated cAMP production, the PDSP uses Promega's split luciferase based GloSensor cAMP biosensor technology. With the cells stably expressing target receptors, we transfect with the GloSensor cAMP DNA construct overnight; otherwise, we co-transfect HEK 293T cells with target receptor DNA and GloSensor cAMP DNA construct overnight. For detailed transfection protocol, see above section "Calcium precipitation transfection". To prepare plates for assays, cells are seeded into PLL-coated 384-well white clear bottom cell culture plates in DMEM supplemented with 1% dFBS at a density of 15-20K cells in a volume of 40  $\mu$ l per well. The plates can be used for assays after 6 hours or overnight.

2.5.2. Split luciferase biosensor cAMP assay – Luciferin first protocol: The GloSensor cAMP assays have been widely used in determining  $G_{i^-}$  or  $G_{s^-}$ GPCR mediated cAMP production in live cells (142, 147, 158–161). The PDSP uses these assays for cell-based functional assays with  $G_{i^-}$  or  $G_{s^-}$ coupled GPCRs. On the day of assay, cells are removed from culture medium and loaded with 20  $\mu$ l of 4 mM luciferin prepared in assay buffer for 60 min at 37°C. All the following steps are carried out at room temperature. To measure agonist activity at  $G_{s^-}$ coupled receptors, 10  $\mu$ l of 3x drug solutions are added and the plate is counted for chemiluminescence after 15 minutes. To measure antagonist activity at  $G_{s^-}$ coupled receptors, cells are preincubated with drugs for 15 minutes before addition of an EC80 concentration of a reference agonist, and chemiluminescence is counted after 15 minutes. To measure agonist activity at  $G_{i^-}$ coupled receptors, 10  $\mu$ l 3x drug solutions is added for 15 minutes before addition of 5  $\mu$ l of isoproterenol at a final concentration of 200 nM, and the plate is counted for chemiluminescence after 15 minutes. An alternative way to directly activate adenylyl cyclases is by the use of 30  $\mu$ M forskolin(162–164), especially when cells that do not have enough  $G_{s^-}$ CAR mediated adenylyl cyclase activity (such as CHO cells) are used for GloSensor cAMP assays. To

measure antagonist activity at  $G_i$ -coupled receptors, cells are preincubated with drugs for 15 minutes before the addition of an EC80 concentration of a reference agonist for another 15 minutes, followed by the addition of 5  $\mu$ l isoproternol at a final concentration of 200 nM and counting after 15 minutes. Isoproterenol is used to activate the endogenous  $G_s$  protein through endogenous  $G_2$  adrenergic receptors. Different receptors and different cell lines might need different preincubation times; preliminary assays are done to determine the best count window before large-scale screening assays.

- **2.5.3. Split luciferase biosensor cAMP assay Drug first protocol:** On the day of assay, cells are removed from culture medium and receive 20  $\mu$ l/well assay buffer, followed by addition of 10  $\mu$ l of 3x drug solutions for 15 minutes at room temperature. To measure agonist activity for  $G_s$ -coupled receptors, 10  $\mu$ l of 4 mM luciferin prepared in assay buffer is added, and counting is done after 15 minutes. To measure agonist activity for  $G_i$ -coupled receptors, 10  $\mu$ l of 4 mM Luciferin supplemented with Isoproternol at final of 200 nM is added, and counting is done after 15 minutes. To measure antagonist activity at Gi-coupled receptors, cells are preincubated with drugs for 15 minutes before addition of an EC80 concentration of a reference agonist for another 15 minutes, followed by addition of 10  $\mu$ l of 4 mM luciferin supplemented with isoproternol at a final concentration of 200 nM and counting after 15 minutes. Different receptors and different cell lines might need different preincubation times; therefore, a preliminary assay are performed to determine the best count window before large-scale screening assays.
- **2.5.3.1. Primary assays Single concentration assays.** Each new compound is tested on all receptors at a single concentration ( $10 \mu M$ ) for activity as an agonist or an antagonist. Testing for antagonism is performed in presence of the EC<sub>50</sub> concentration of a typical agonist (as described above). Each compound is tested in duplicate in two separate experiments performed on different lots of cells. In addition to the tested compounds, each 96-well plate contains wells for the determination of basal activity, maximal agonist stimulation, agonist EC<sub>50</sub> concentrations (i.e., concentration-response isotherm), and the IC<sub>50</sub> concentration of a known antagonist for purposes of positive control and for activity calculations. The reported results for each compound are calculated for agonists as the % of maximal activity (as obtained with maximal agonist concentrations), and for antagonists as the %

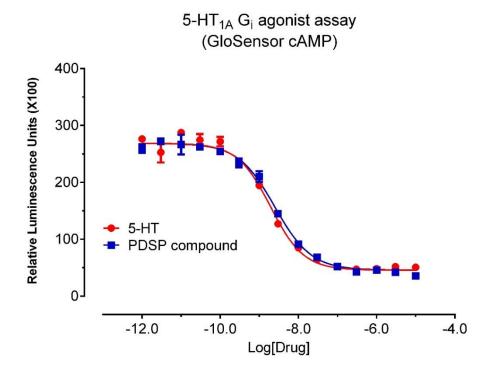
inhibition of receptor activity (in presence of an  $EC_{50}$  concentration of the agonist). Results are expressed as means  $\pm$  SEM from four replicates.

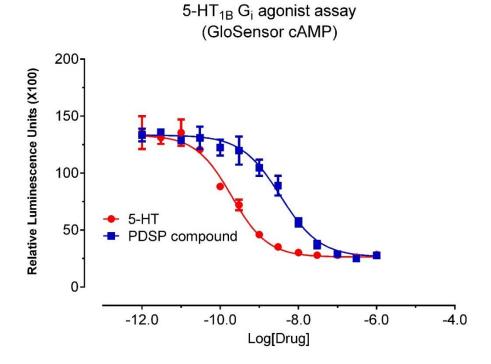
- **2.5.3.2. Secondary assays Dose-response assays.** Compounds determined to be active as agonists or antagonists may be tested for their potency in dose-response experiments. Eight-point dose-response curves are performed in duplicate twice on two separate lots of cells (sometimes a third curve may be needed if in the first experiment the range of concentrations used is outside of the active range). For antagonists, these curves are performed in the presence of the  $EC_{50}$  concentration of the agonist. For each compound, the results from four replicates are averaged and then either  $EC_{50}$  or  $IC_{50}$  values are calculated by non-linear regression using the 4-parameter logistic equation. Results are reported as  $EC_{50}$  or  $IC_{50}$  values for each tested compound (and receptor) and include the  $EC_{50}$  or  $IC_{50}$  values of a known agonist or antagonist for comparison purposes.
- **2.5.4. Data processing and analysis**: The luminescence counter records chemiluminescence in relative luminescence units (RLU) and saves files in 384-well format in Excel sheet for easy processing. Results in RLU are plotted and analyzed in GraphPad Prism v5.0 as outlined in **Section 2.3**.
- **2.5.5. Table and Figures.** List of GPCRs for which the PDSP provides functional assays to determine  $G_i$ ,  $G_s$ , or  $G_{olf}$  activity, and their corresponding dose-response curves. PDSP will also provide functional assays for other  $G_i$  or  $G_s$  coupled GPCRs upon request.

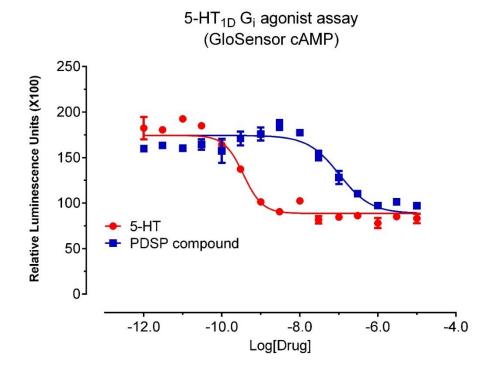
**Table 30**. List of GPCRs for which the PDSP provides cAMP measurements using GloSensor cAMP technology for  $G_i$  or  $G_s$  coupled receptors, and representative figures. PDSP will also design and develop functional assays for other  $G_i$ - or  $G_s$ -coupled GPCRs upon request and approval.

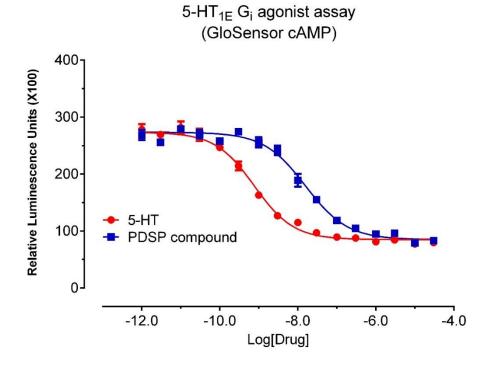
| Receptor               | Gi                             | Cell  | Ligands                     | Emax    | pEC <sub>50</sub> (nM) or | Hill slope |
|------------------------|--------------------------------|-------|-----------------------------|---------|---------------------------|------------|
|                        | or<br>G <sub>s</sub>           |       | (references)                | (fold)* | plC₅₀ (nM)                |            |
| 5-HT <sub>1A</sub>     | Gi                             | HEK T | 5-HT                        | 5.9     | 8.71 (1.9)                | -1.02      |
| 5-HT <sub>1B</sub>     | Gi                             | HEK T | 5-HT                        | 5.1     | 9.71 (0.20)               | -0.94      |
| 5-HT <sub>1D</sub>     | Gi                             | HEK T | 5-HT                        | 2.0     | 9.45 (0.36)               | -1.77      |
| 5-HT <sub>1E</sub>     | Gi                             | HEK T | 5-HT                        | 3.2     | 9.12 (0.77)               | -0.87      |
| 5-HT <sub>4</sub>      | Gs                             | HEK T | 5-HT                        | 2.3     | 10.17 (0.07)              | 0.97       |
| 5-HT <sub>5A</sub>     | Gs                             | СНО   | 5-HT                        |         | Being developed           |            |
| 5-HT <sub>6</sub>      | Gs                             | HEK T | 5-HT                        | 14.6    | 9.29 (0.5)                | 0.78       |
| 5-HT <sub>7A</sub>     | Gs                             | HEK T | 5-HT                        | 9.1     | 7.75 (17.6)               | 0.81       |
|                        |                                |       | Clozapine (inverse agonist) | 7.9     | 6.91 (123)                | -0.77      |
| M <sub>2</sub>         | Gi                             | HEK T | Acetylcholine               | 2.1     | 7.62 (24.1)               | -0.74      |
| $M_2D$                 | Gi                             | HEK T | CNO                         | 3.4     | 6.30 (497)                | -0.79      |
| M <sub>4</sub>         | Gi                             | HEK T | Acetylcholine               | 2.7     | 8.23 (5.8)                | -0.94      |
| M <sub>4</sub> D       | Gi                             | HEK T | CNO                         | 2.6     | 9.46 (0.35)               | -1.25      |
| G <sub>s</sub> -DREADD | Gs                             | HEK T | CNO                         | 13.3    | 7.89 (12.9)               | 1.44       |
|                        |                                |       | Acetylcholine               | 8.3     | 4.60 (25 μM)              | 1.91       |
| A <sub>1</sub>         | Gi                             | HEK T | NECA                        | 3.6     | 9.11 (0.78)               | -0.99      |
|                        |                                |       | DPCPX (antagonist)          | 11.0    | 5.18 (6.6 μM)             | 0.81       |
| A <sub>2A</sub>        | Gs                             | HEK T | NECA                        | 2.4     | 9.58 (0.26)               | 0.74       |
|                        |                                |       | ССРА                        | 1.9     | 7.80 (15.8)               | 1.42       |
|                        |                                |       | CGS21680                    | 2.2     | 9.67 (0.22)               | 0.72       |
|                        |                                |       | CGS15943 (inverse agonist)  | 10.4    | 7.65 (22.5)               | -1.27      |
| A <sub>2B</sub>        | Gs                             | HEK T | NECA                        | 30.4    | 8.03 (9.4)                | 1.09       |
|                        |                                |       | CGS15943 (antagonist)       | 24.3    | 6.44 (366)                | -0.74      |
| CRF-1                  | Gs                             | HEK T | CRF                         | 95.8    | 8.55 (2.8)                | 0.78       |
| CRF-2                  | Gs                             | HEK T | CRF                         | 125.0   | 7.26 (54.7)               | 0.95       |
| $D_1$                  | Gs                             | HEK T | Dopamine                    | 153.6   | 8.18 (6.7)                | 0.94       |
| D <sub>2</sub>         | Gi                             | HEK T | Dopamine                    | 2.9     | 8.98 (1.1)                | -0.97      |
| D <sub>3</sub>         | Gi                             | HEK T | Dopamine                    |         | Being developed           |            |
| D <sub>4</sub>         | Gi                             | HEK T | Dopamine                    | 2.0     | 9.19 (0.6)                | -1.67      |
| D <sub>5</sub>         | Gs                             | HEK T | Dopamine                    | 37.6    | 9.24 (0.6)                | 0.80       |
| H <sub>2</sub>         | G <sub>s</sub> HEK T Histamine |       | Histamine                   | 40.0    | 8.07 (84.7)               | 1.08       |
|                        |                                |       | Cimetidine (antagonist)     | 16.6    | 5.98 (1039)               | -1.45      |
| H <sub>3</sub>         | $G_{i}$                        | HEK T | Histamine                   | 4.6     | 8.90 (1.3)                | -0.70      |

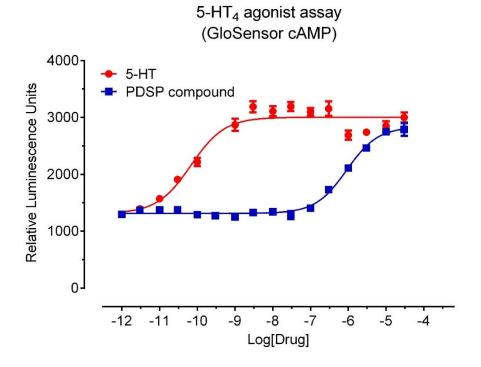
| Receptor           | Gi                   | Cell  | Ligands                  | Emax    | pEC <sub>50</sub> (nM) or | Hill slope |
|--------------------|----------------------|-------|--------------------------|---------|---------------------------|------------|
|                    | or                   |       | (references)             | (fold)* | pIC <sub>50</sub> (nM)    |            |
|                    | Gs                   |       |                          | 20.0    | 11 10 (7.0.11)            | 4.00       |
| β <sub>1</sub>     | Gs                   | HEK T | Isoproterenol            | 20.8    | 11.10 (7.9 pM)            | 1.32       |
| ß <sub>2</sub>     | G <sub>s</sub> HEK T |       | Isoproterenol            | 54.3    | 10.71 (19.3 pM)           | 0.94       |
| _                  | _                    |       | Salemeterol              | 42.7    | 9.78 (0.17)               | 0.86       |
| β <sub>3</sub>     | Gs                   | HEK T | Isoprotenerol            | 30.5    | 8.22 (6.0)                | 0.62       |
| Control HEK T      | Gs                   | HEK T | Isopreternol             | 16.3    | 7.89 (12.9)               | 1.19       |
| (endogenous        |                      |       | Norepinephrine           | 7.8     | 6.28 (520)                | 0.89       |
| $\beta$ receptors) |                      |       | Cimaterol                | 10.7    | 7.98 (11.8)               | 0.98       |
|                    |                      |       | Dobutamine               | 7.5     | 5.51 (3090)               | 0.98       |
|                    |                      |       | Fenoterol                | 19.5    | 7.37 (44.0)               | 0.63       |
|                    |                      |       | Metaproterenol           | 8.0     | 5.94 (1159)               | 1.55       |
|                    |                      |       | Salbuterol               | 6.4     | 6.94 (116)                | 1.34       |
|                    |                      |       | Terbutaline              | 7.8     | 6.16 (691)                | 0.87       |
| HCA <sub>1</sub>   | $G_{i}$              | CHO   | Niacin                   | 1.5     | 4.94 (11.6 μM)            | 0.43       |
|                    |                      |       | Acifran                  | 1.5     | 4.25 (56.7 μM)            | 0.55       |
| HCA <sub>2</sub>   | Gi                   | СНО   | Acifran                  | 1.5     | 4.25 (56.7 μM)            | 0.55       |
|                    |                      |       | Acifran                  | 2.8     | 6.36 (438)                | 0.69       |
| HCA <sub>3</sub>   | Gi                   | СНО   | Niacin                   | 2.0     | 3.43 (376 μM)             | 0.56       |
|                    |                      |       | Acifran                  | 3.6     | 4.31 (49.3 μM)            | 0.67       |
| GLP-1              | Gs                   | HEKT  | GLP-1                    | 173.6   | 7.24 (58.1)               | 0.81       |
|                    |                      |       | Glucagon                 | 175.4   | 8.19 (6.5)                | 0.95       |
| DOR                | Gi                   | HEK T | DADLE                    | 2.7     | 7.36 (43.6)               | -0.94      |
|                    |                      |       | Naltrindole (antagonist) | 1.6     | 7.73 (18.7)               | 1.46       |
| KOR                | Gi                   | HEK T | Salvinorin A             | 2.4     | 9.43 (0.37)               | -1.33      |
|                    |                      |       | GNTI (antagonist)        | 3.2     | 8.13 (7.4)                | 1.54       |
| MOR                | Gi                   | HEK T | DAMGO                    | 3.2     | 8.94 (1.2)                | -0.75      |
|                    |                      |       | Naltrexone (antagonist)  | 2.6     | 7.70 (20.2)               | 0.67       |
| NOP                | Gi                   | HEK T | Nociceptin               | 3.6     | 8.64 (2.3)                | -1.06      |
|                    |                      |       | SB612111 (antagonist)    | 1.8     | 7.66 (22.0)               | 1.64       |
| Oxoglutarate       | Gi                   | HEK T | α-Ketoglutaric Acid      | 2.2     | 3.49 (327 μM)             | -1.52      |
| MC <sub>1</sub>    | Gs                   | HEK T | α-MSH                    | 19.1    | 7.45 (35.5)               | 1.14       |
|                    |                      |       | Melanotan II             | 21.2    | 7.89 (13.0)               | 0.87       |
| MC <sub>3</sub>    | Gs                   | HEK T | α-MSH                    | 91.0    | 7.06 (87.4)               | 1.26       |
|                    |                      |       | Melanotan II             | 86.1    | 7.62 (23.9)               | 0.93       |
| MC <sub>4</sub>    | Gs                   | HEK T | α-MSH                    | 80.6    | 9.19 (64.0)               | 0.98       |
|                    |                      |       | Melanotan II             | 89.1    | 7.72 (18.9)               | 0.76       |
| MC <sub>5</sub>    | Gs                   | HEK T | α-MSH                    | 35.9    | 6.49 (327)                | 1.65       |
| -                  |                      |       | Melanotan II             | 29.8    | 6.81 (156)                | 1.54       |
| MT <sub>1</sub>    | Gi                   | НЕК Т | Melatonin                | 2.5     | 10.51 (0.031)             | -1.84      |

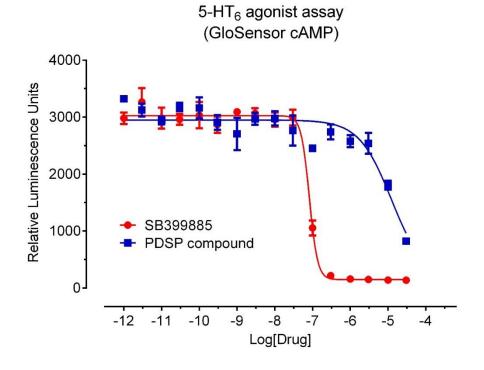

| Receptor          | G <sub>i</sub><br>or<br>G <sub>s</sub> | Cell                              | Ligands<br>(references)   | Emax<br>(fold)* | pEC <sub>50</sub> (nM) or<br>pIC <sub>50</sub> (nM) | Hill slope |
|-------------------|----------------------------------------|-----------------------------------|---------------------------|-----------------|-----------------------------------------------------|------------|
| MT <sub>2</sub>   | Gi                                     | HEK T                             | Melatonin                 | 1.9             | 10.85 (0.014)                                       | -1.18      |
| mGlu <sub>2</sub> | Gi                                     | HEK                               | L-Glutamate               | 5.8             | 5.14 (7287)                                         | -1.13      |
|                   |                                        |                                   | LY379268                  | 5.8             | 8.39 (4.1)                                          | -0.89      |
|                   |                                        |                                   | LY341495 (antagonist)     | 4.1             | 7.27 (53.5)                                         | 1.52       |
| mGlu₃             | Gi                                     | HEK                               | L-Glutamate               | 2.3             | 6.30 (505)                                          | -1.05      |
|                   |                                        |                                   | LY341495 (antagonist)     | 3.2             | 7.27 (53.2)                                         | 2.13       |
| mGlu <sub>4</sub> | Gi                                     | HEK                               | L-SOP                     | 4.8             | 5.80 (1590)                                         | -1.02      |
|                   |                                        |                                   | LY341495 (antagonist)     | 2.3             | 5.27 (5381)                                         | 3.38       |
| mGlu <sub>6</sub> | Gi                                     | HEK                               | L-Glutamate               | 1.9             | 4.84 (14.5 μM)                                      | -1.25      |
|                   |                                        |                                   | L-SOP                     | 1.9             | 6.17 (684)                                          | -1.01      |
|                   |                                        |                                   | LY341495 (antagonist)     | 2.8             | 5.90 (1264)                                         | 1.33       |
| mGlu <sub>7</sub> | Gi                                     | Not available yet, in development |                           |                 |                                                     |            |
| mGlu <sub>8</sub> | Gi                                     | HEK                               | L-Glutamate               | 3.6             | 5.87 (1336)                                         | -0.68      |
|                   |                                        |                                   | LY341495 (antagonist)     | 2.6             | 6.79 (163)                                          | 1.28       |
| NPBW <sub>1</sub> | Gi                                     | HEK T                             | Neuropeptide W-23 (165)   | 2.1             | 8.05 (8.8)                                          | -0.88      |
| NPBW <sub>2</sub> | $G_{i}$                                | HEK T                             |                           | 1.6             | 9.56 (0.27)                                         | -0.38      |
| RXFP1             | Gs                                     | HEK T                             | Relaxin-2                 | 95.7            | 9.15 (0.7)                                          | 0.92       |
| RXFP2             | Gs                                     | HEK T                             | Relaxin-2                 | 21.1            | 7.48 (33.4)                                         | 0.96       |
| RXFP3             | $G_{i}$                                | HEK T                             | Relaxin-3                 | 2.4             | 9.85 (0.14)                                         | -1.40      |
| RXFP4             | $G_{i}$                                | HEK T                             | Relaxin-3                 | 2.4             | 9.19 (0.06)                                         | -0.78      |
| SSTR5             | $G_{i}$                                | HEK T                             | Somastotatin              | 7.7             | 8.63 (2.4)                                          | -1.66      |
| TP                | Gs                                     | HEK T                             | U46619(166)               | 27              | 5.98 (1055)                                         | 0.98       |
|                   |                                        |                                   | S18886 (antagonist)(167)  | 26              | 8.29 (5.2)                                          | -1.21      |
| GPR88             | Gi                                     | HEK T                             | PDSP reference#           | 6.1             | 5.99 (1030)                                         | -0.74      |
| GPR4              | Gs                                     | HEK T                             | H <sup>+</sup> (161, 168) | 5.9             | 7.99 (10.1)                                         | 5.53       |
| GPR65             | Gs                                     | HEK T                             |                           | 9.1             | 7.44 (36.4)                                         | 3.56       |
| GPR68             | Gs                                     | HEK T                             |                           | 13.6            | 6.80 (157)                                          | 3.36       |
| GPR39             | $G_s$                                  | HEK T                             | GPR39-C3 (146-148)        | 16.2            | 6.28 (527)                                          | 1.13       |

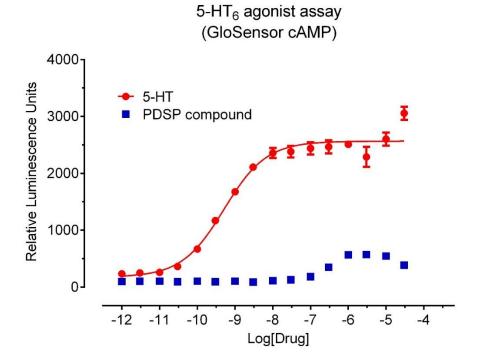

Notes:

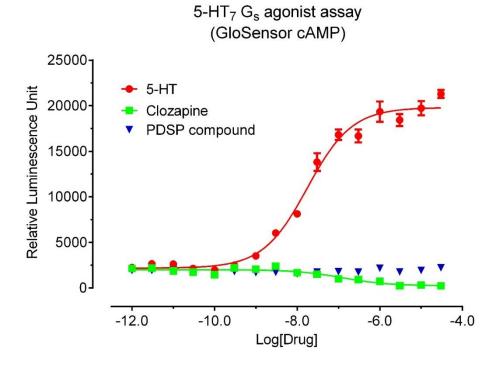

#: Roth lab unpublished results

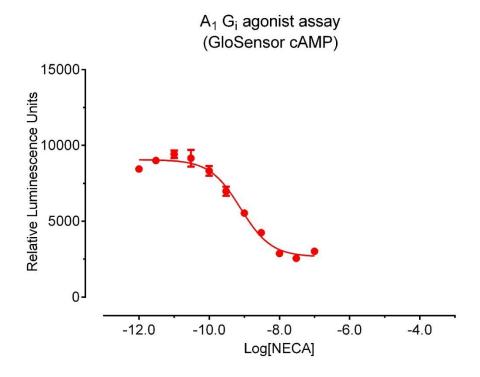

**Figure 45**. Representative curves for the GloSensor cAMP assay. The assays were conducted according to above procedures and analyzed in GraphPad Prism 6.0.

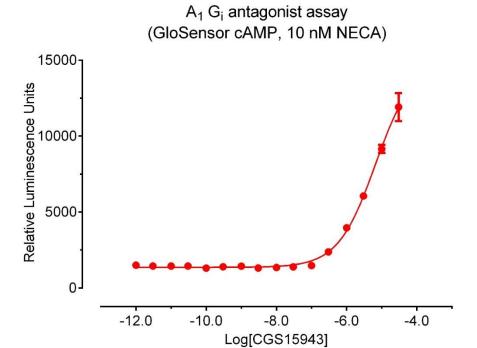

<sup>\*:</sup> Emax in fold for  $G_i$  pathway represents the ratio of basal vs maximal inhibition; Emax in fold for  $G_s$  pathway represents the ratio of maximal activation vs basal.

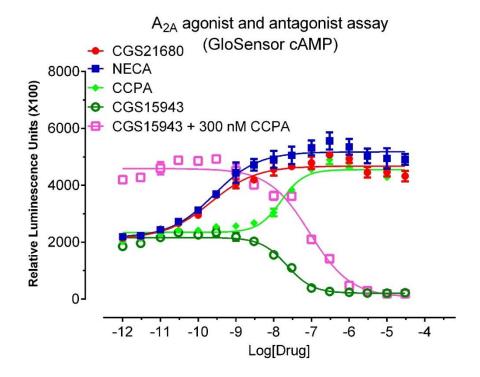


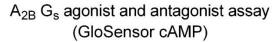



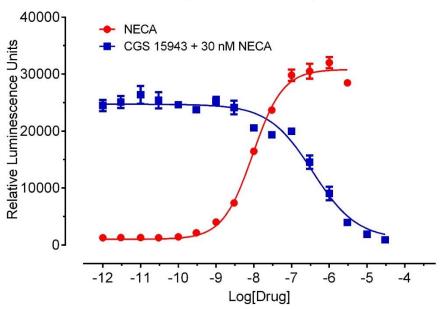



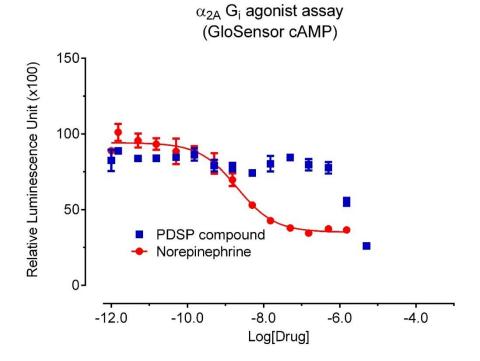



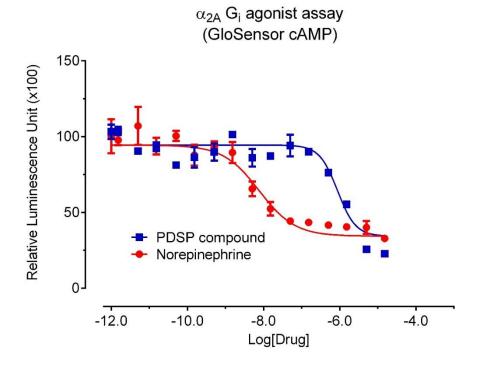



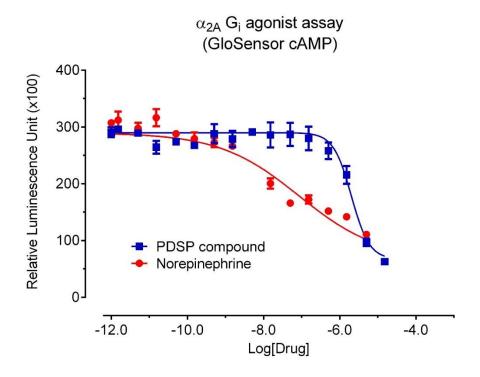



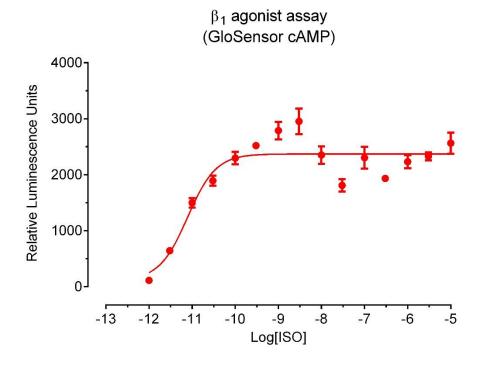



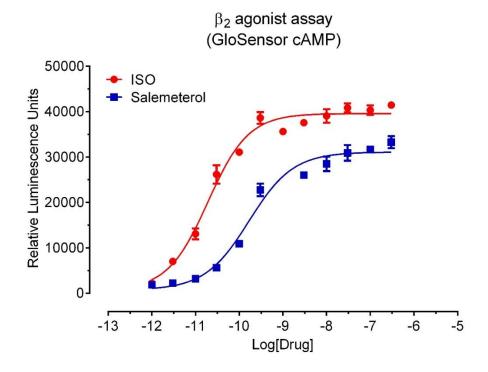



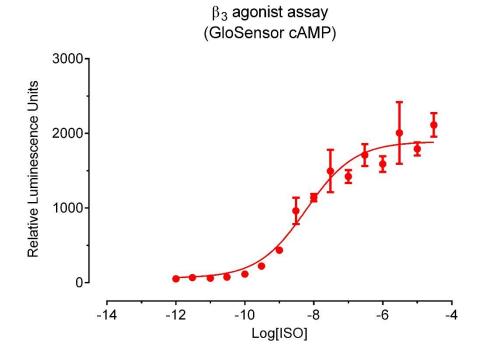



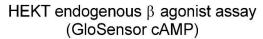



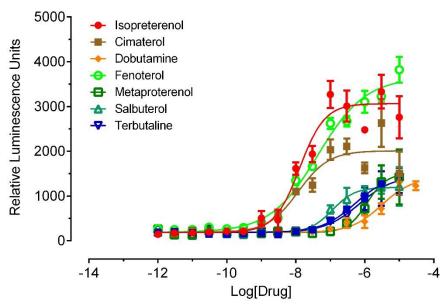



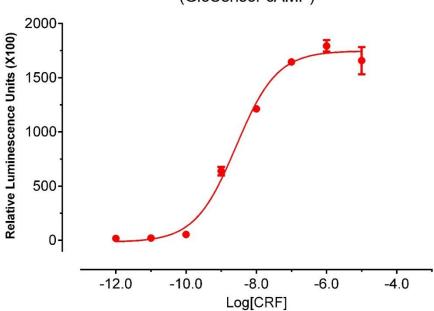



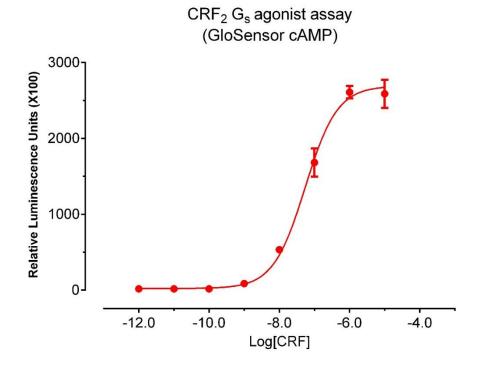



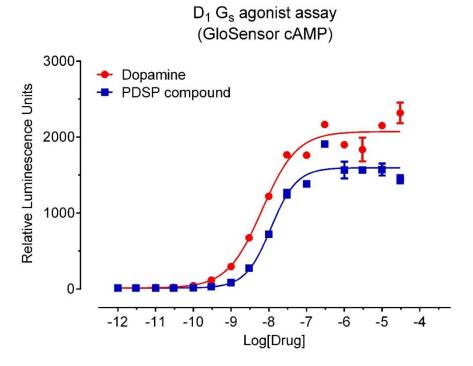



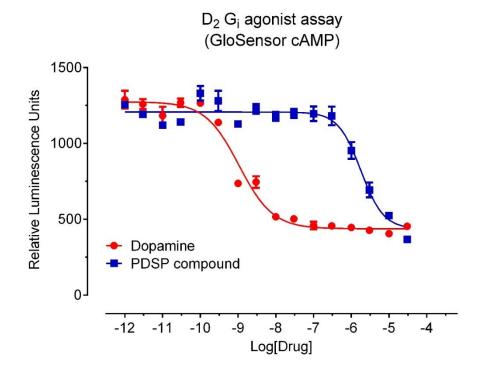



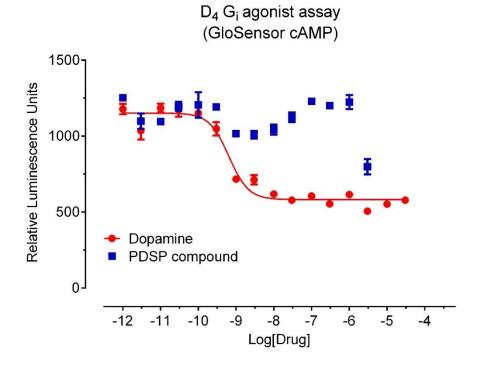


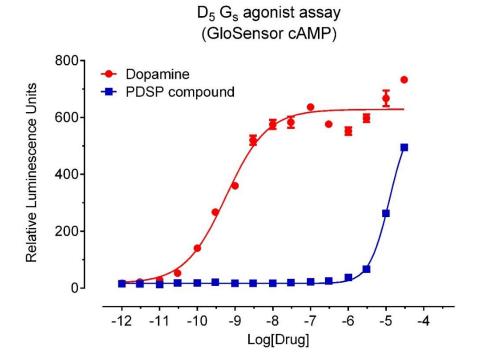



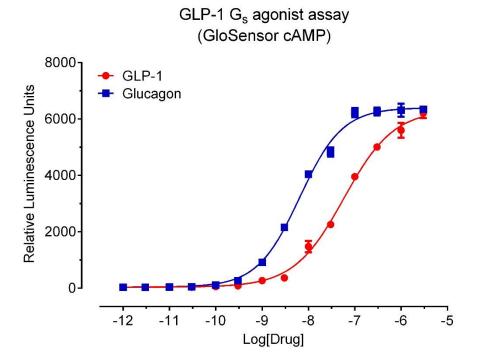



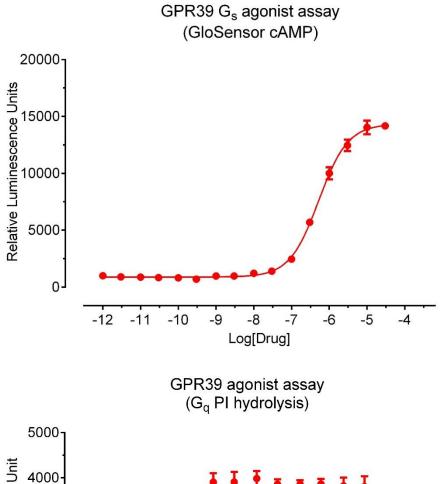



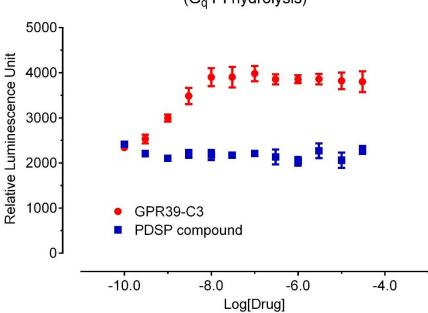





CRF<sub>1</sub> G<sub>s</sub> agonist assay (GloSensor cAMP)



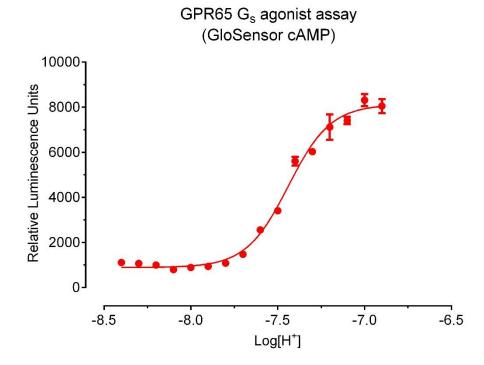



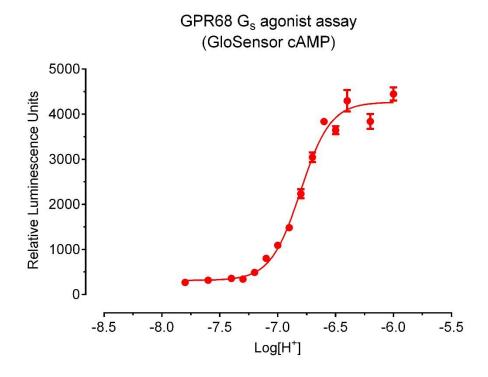



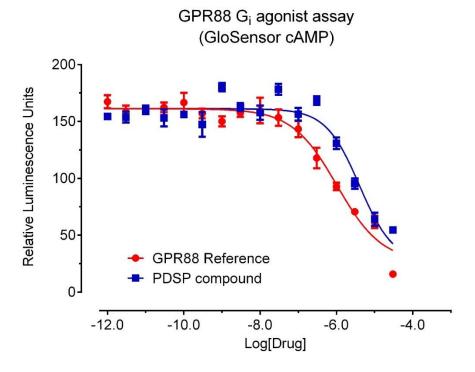





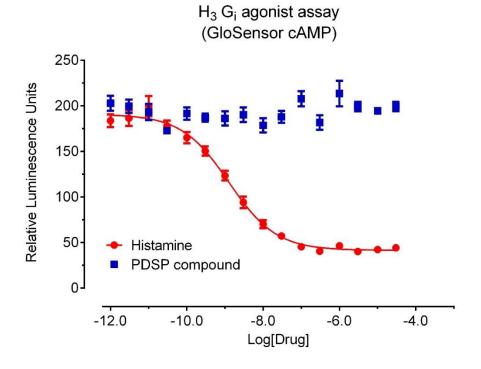


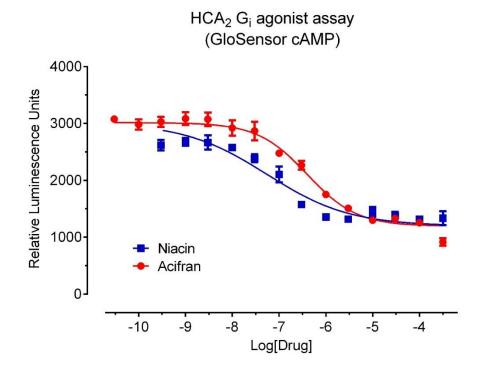


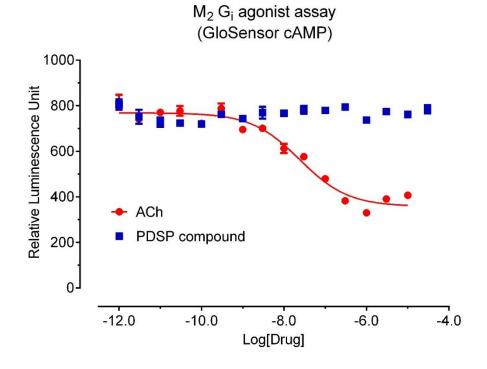



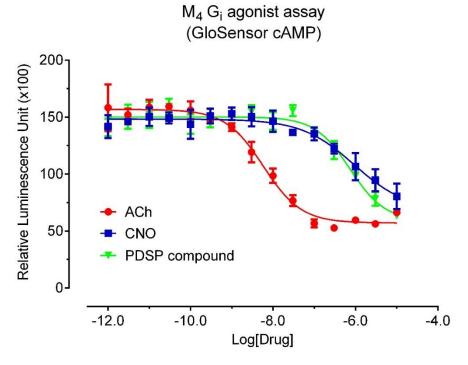


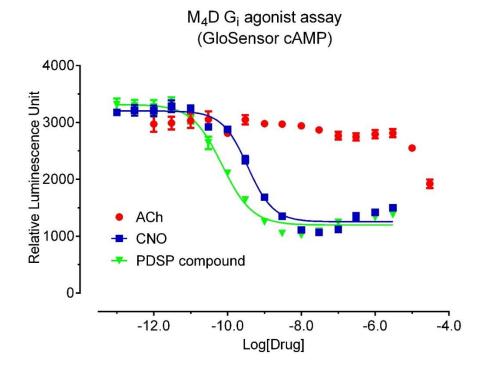



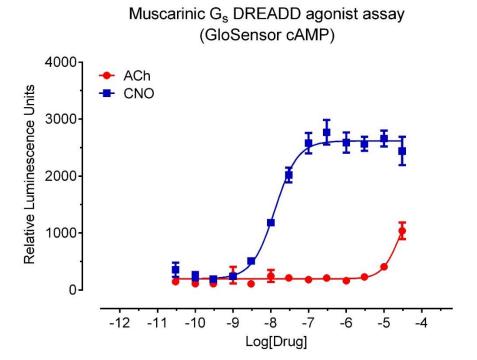



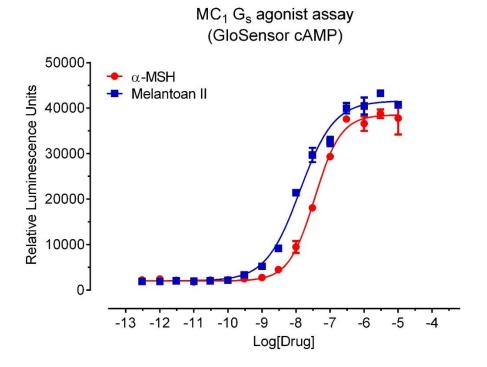



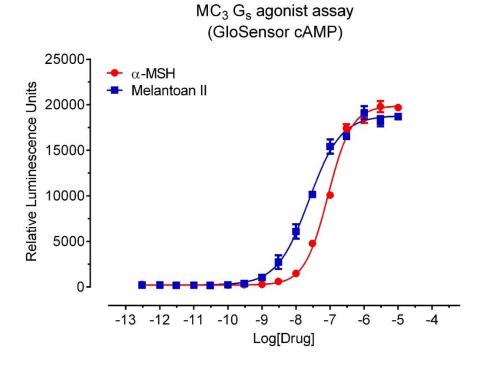


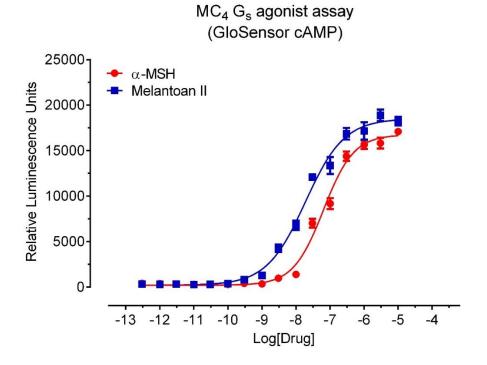



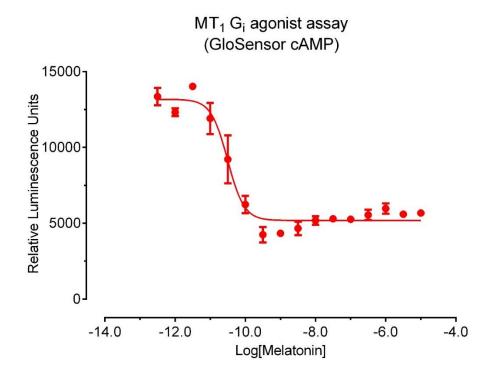



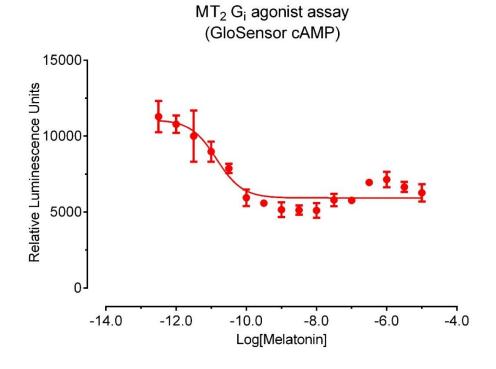



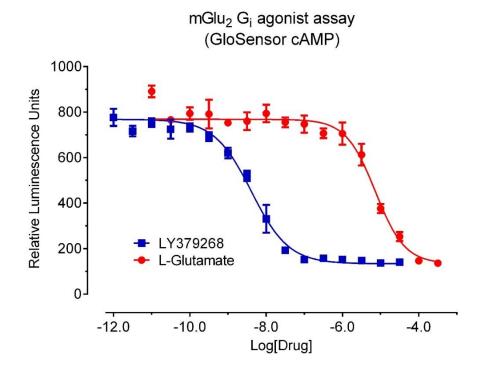



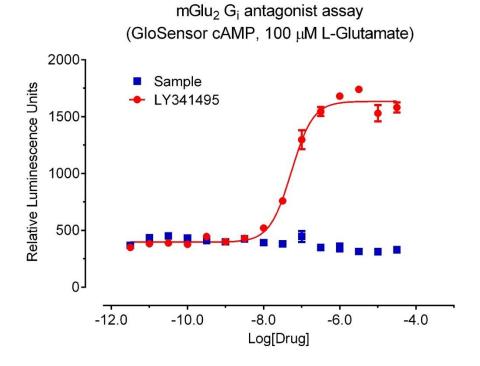



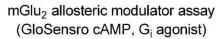


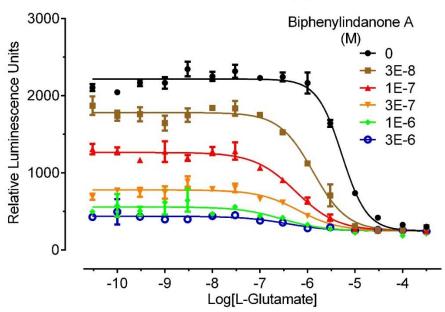



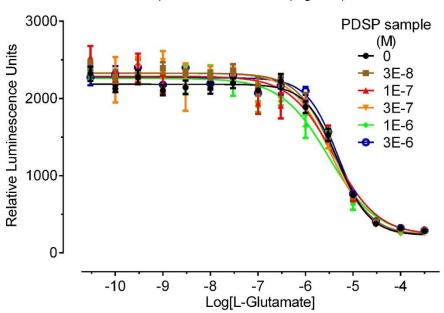



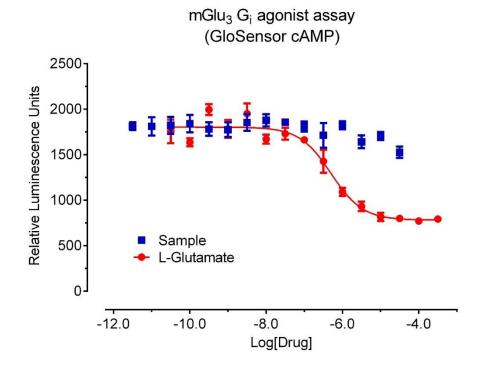



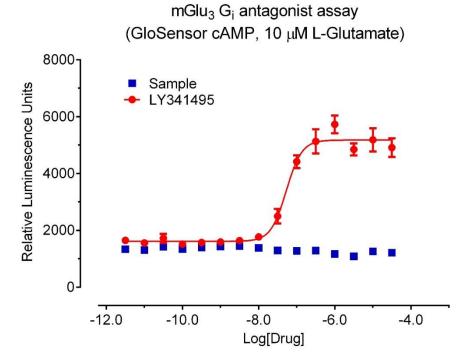



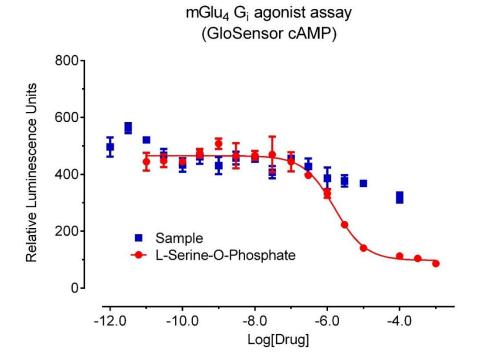



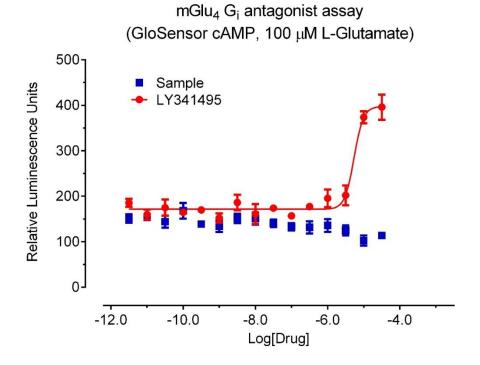


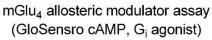



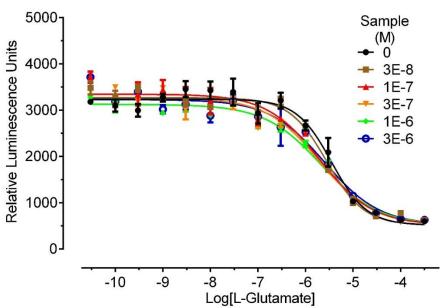



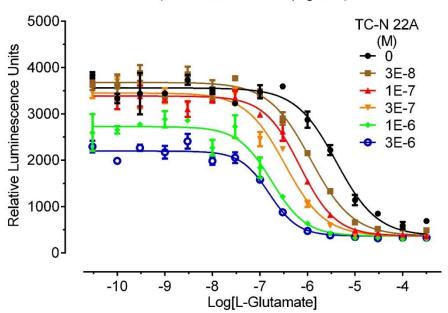



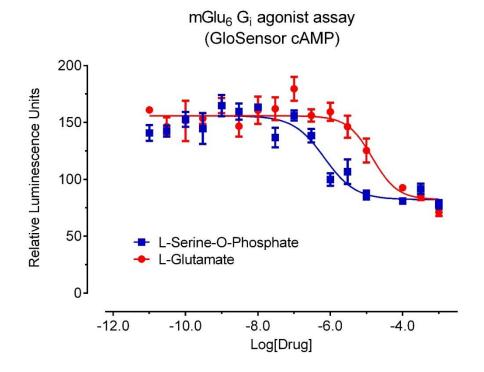


mGlu<sub>2</sub> allosteric modulator assay (GloSensro cAMP, G<sub>i</sub> agonist)

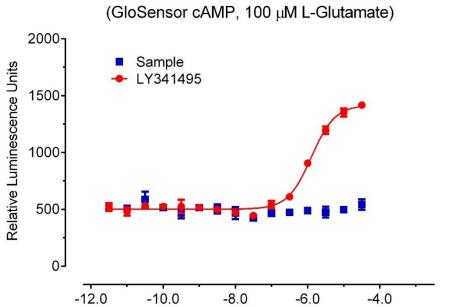




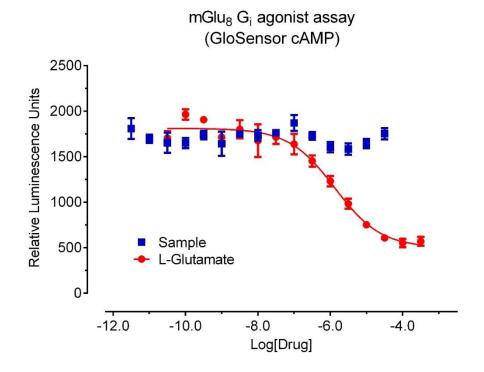



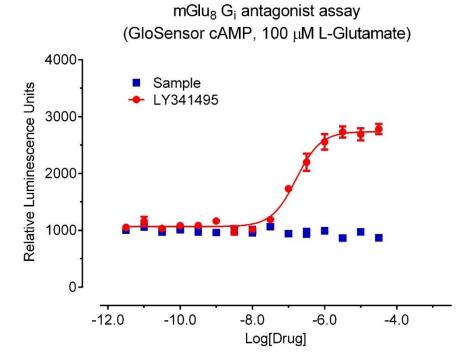



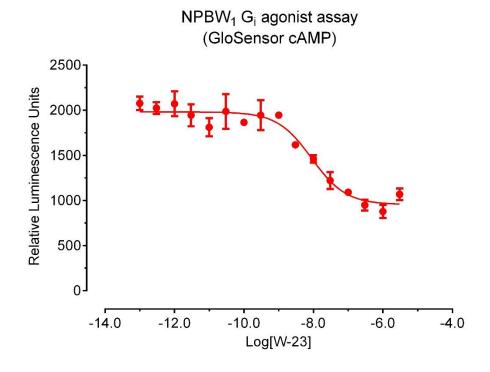



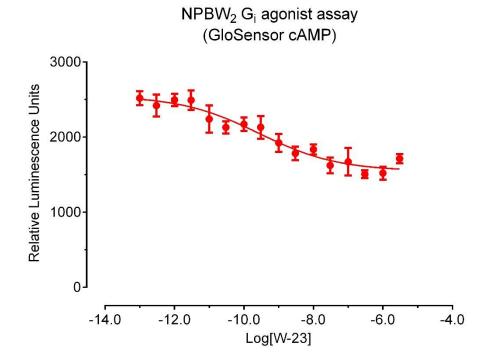


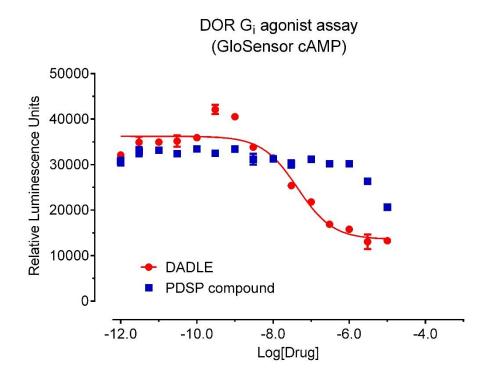

mGlu<sub>4</sub> allosteric modulator assay (GloSensro cAMP, G<sub>i</sub> agonist)

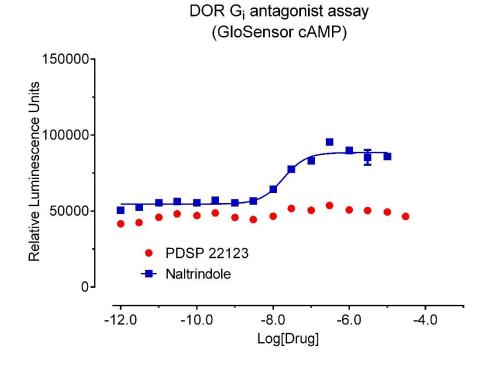


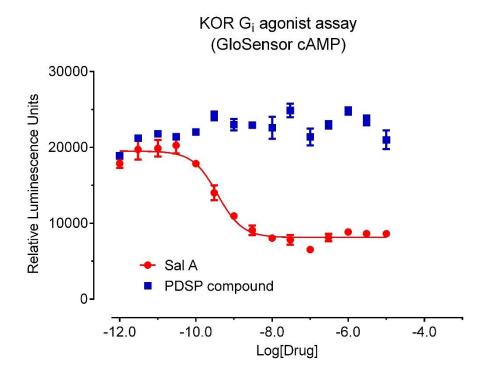



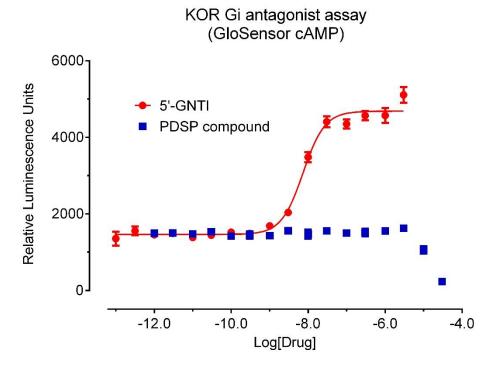



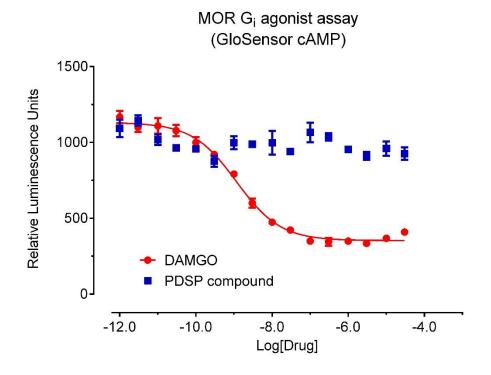


Log[Drug]

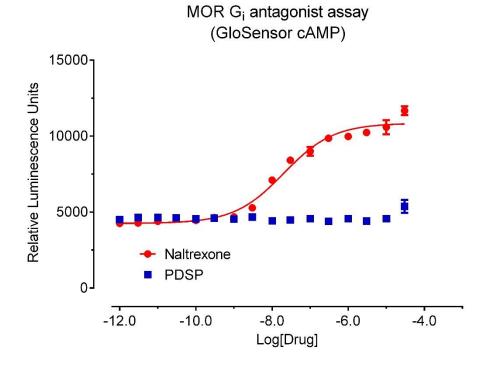

mGlu<sub>6</sub> G<sub>i</sub> antagonist assay

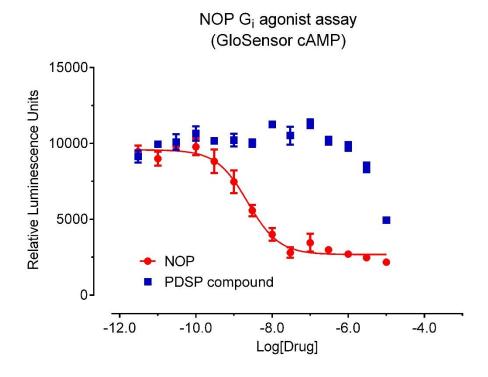


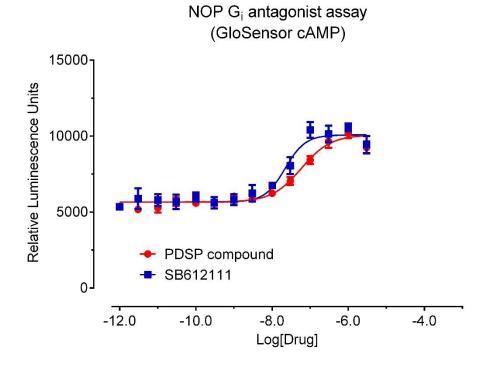



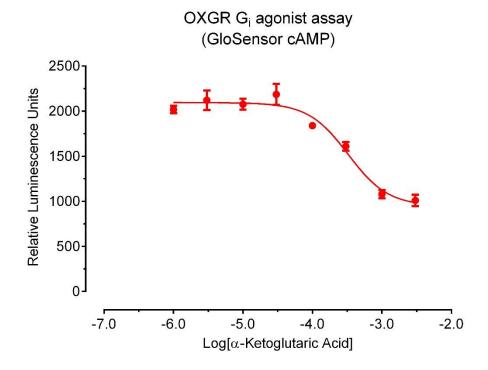



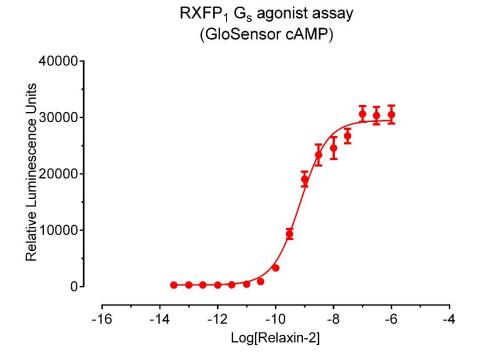



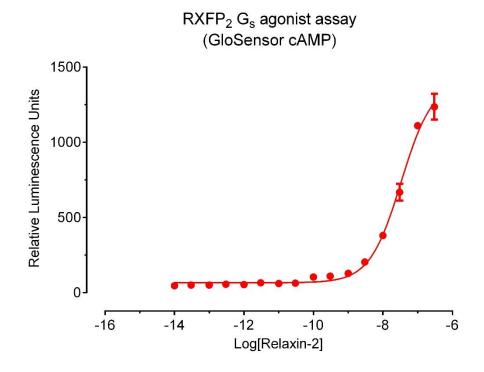



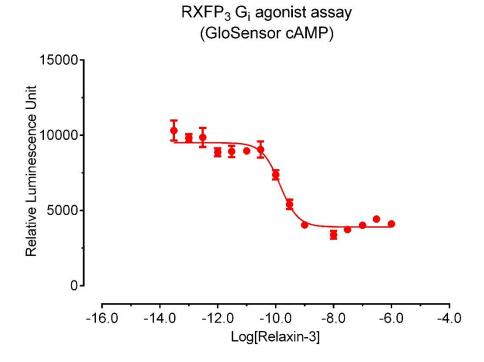



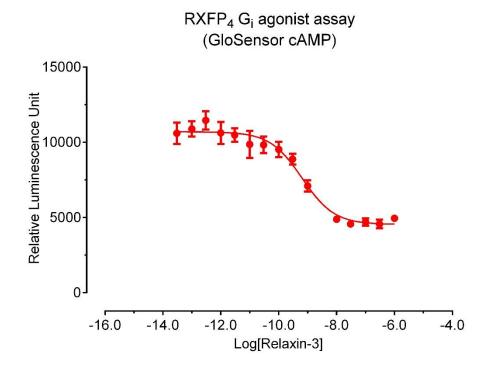



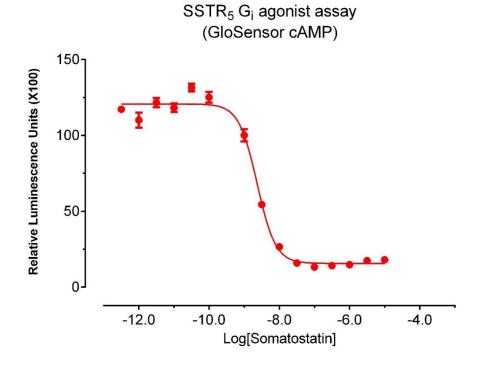



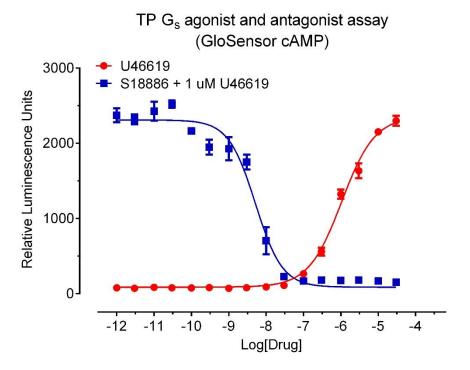







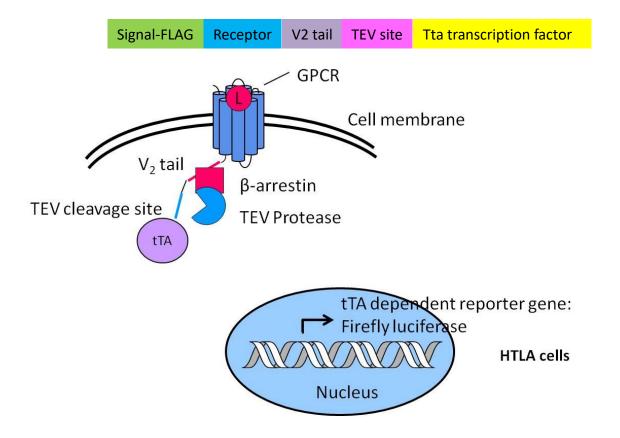


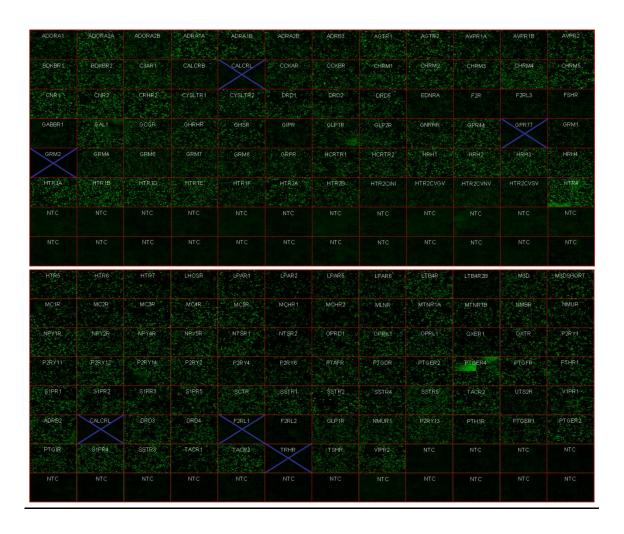




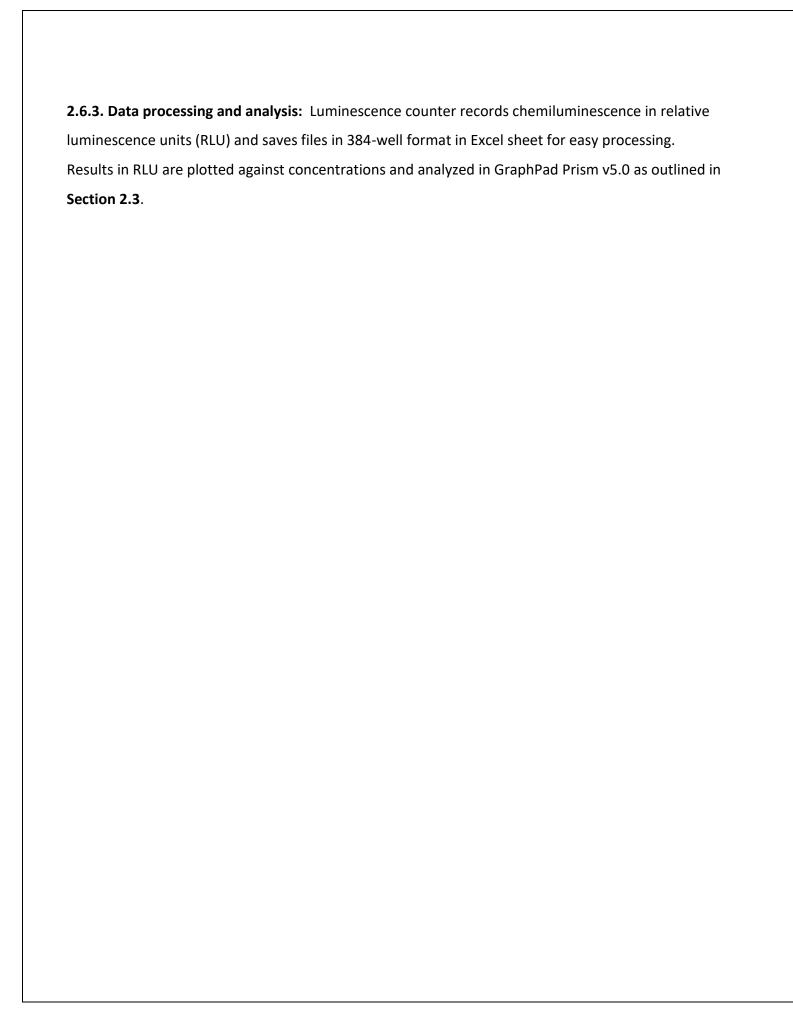

## 2.6. GPCR Tango assays: G-protein independent $\beta$ -arrestin recruitment

Main equipment: Luminescence counter


Main reagents: BrightGlo® reagents from Promega


Tango assay buffer: 20 mM HEPES, 1x HBSS, pH 7.40

**2.6.1.** Tango construct design and cell culture: To measure GPCR mediated β-arrestin translocation activity, we adopted the Tango assay system originally developed by Richard Axel and his colleagues (169). GPCR Tango constructs (**Figure 42**, below) were codon optimized for better expression in mammalian cell lines and total synthesis was by Blue Heron Biotech (Bothell, WA), with independent sequencing confirmation (154). HTLA cells (an HEK293 cell line stably expressing a tTA-dependent luciferase reporter and a β-arrestin2-TEV fusion gene, **Figure 34**, bottom) was gifted from Richard Axel's lab, and are maintained in DMEM supplemented with 10% FBS and 2 μg/ml Puromycin and 100 μg/ml Hygromycin. The FLAG tag was designed into the GPCR Tango constructs for confirmation of surface expression (**Figure 43**) and comparison of expression levels.


2.6.2. GPCR Tango assay: HTLA cells are transfected with GPCR tango constructs overnight (see calcium mobilization section for detailed transfection protocol) and are plated in DMEM supplemented with 1% dialyzed FBS in Poly-L-Lys (PLL)-coated 384-well white clear bottom cell culture plates at a density of 15,000 cells in a volume of 40  $\mu$ l per well. Cells are incubated for at least 6 hours (or overnight) to allow them to recover before receiving drug stimulation. Drug stimulation solutions are prepared in sterile-filtered Tango assay buffer at 5x concentration and added to cells (10  $\mu$ l per well) overnight. To measure antagonist activity, drug solutions are made at 6x of the final concentration and are preincubated with cells for 30 min before addition of 10  $\mu$ l of a final EC80 concentration of reference agonist. The EC80 concentration is determined in separate preliminary dose-response assays. On the day of measurement, medium and drug solutions are removed and 20  $\mu$ l per well of BrightGlo reagent (diluted 20-fold with Tango assay buffer) are added. Plates are incubated for 20 min at room temperature in the dark before being counted on a luminescence counter.

**Figure 46**. Tango construct design (**top**) and GPCR tango assay principle (**bottom**). GPCR Tango constructs were designed as indicated (top). Each construct contains these elements in the following order (1) signal/FLAG tag; (2) gene of interest; (3) Vasopressin 2 C-tail; (4) TEV protease site; (5) tTA transcription factor. The GPCR Tango assay is carried out in transiently transfected HEK T cells that are genetically modified to express β-arrestin2 fused with a TEV protease and a Tta mediated luciferase reporter gene. Activation of the transfected GPCR leads to β-arrestin translocation, which guides TEV protease to cleave the Tta transcription factor from the GPCR tail. The free Tta transcription factor then activates the luciferase reporter gene in the nucleus.





**Figure 47**. Confirmation of surface expression of FLAG-tagged non-orphan non-olfactory GPCRs used for the β-arrestin recruitment assay. Cells were pre-fixed with paraformaldehyde (PFA) for 30 min, blocked using rabbit anti-FLAG antibody (primary), and incubated for 1h at room temperature and then overnight at  $4^{\circ}$ C. On day 2, the plate was incubated with Alexa Fluor 594 goat anti-rabbit antibody (secondary) and Hoechst 33342 dye for 1 h. After thorough washing, the plate was post-fixed with PFA and stored at  $4^{\circ}$ C in the dark. Images were taken using the B-D Pathway High Throughput Bioimager. Blue crosses indicated constructs that were not expressed.



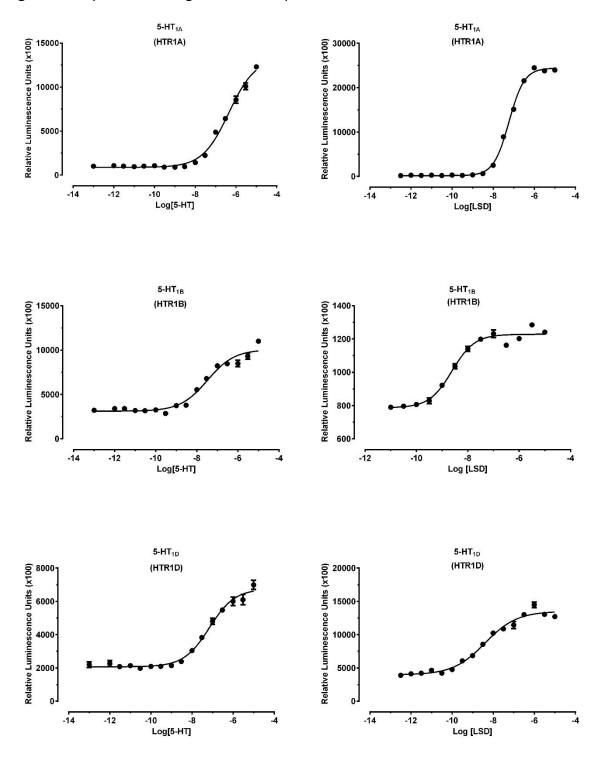
**Table 31**. List of GPCR Tango constructs with representative agonist activity curves. All DNA constructs are human clones, designed according to the original design by Barnea et al., (2008) (169), codon optimized, synthesized by Blue Heron Biotech, and sequence-confirmed (154). Most representative curves were recently published (154) and modified for this protocol book. Some receptors have high variations in E<sub>max</sub> for different reference agonists (such as 5-HT vs LSD at 5-HT receptors) because they were not tested from the same batch of transfected cells, and different assays/transfections may have different efficiency. In addition, some constructs were not optimized when the results were obtained, such as the HTR2C constructs – the ones without N-terminal Signal/FLAG peptide work better than the ones with the Signal/FLAG peptide (Roth lab, unpublished results).

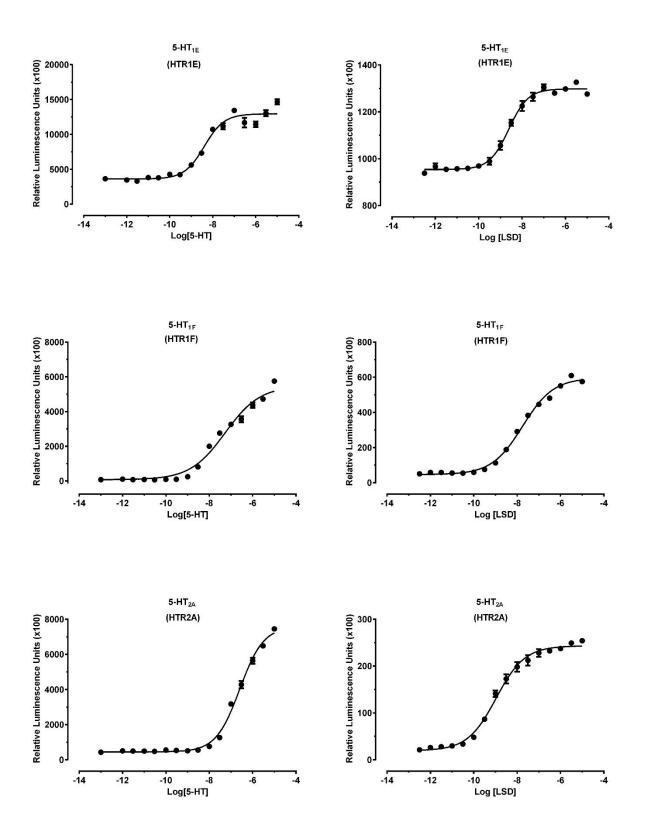
| Gene<br>Name | IUPHAR<br>Receptor<br>Name | Agonists<br>(references) | E <sub>max</sub><br>(fold of basal) | pEC <sub>50</sub> (EC <sub>50</sub> nM) | Hill<br>slope |
|--------------|----------------------------|--------------------------|-------------------------------------|-----------------------------------------|---------------|
| HTR1A        | 5-HT <sub>1A</sub>         | 5-HT                     | 15                                  | 6.35 (448)                              | 0.67          |
|              |                            | LSD                      | 139                                 | 7.22 (59.0)                             | 1.16          |
| HTR1B        | 5-HT <sub>1B</sub>         | 5-HT                     | 3.2                                 | 7.49 (32.7)                             | 0.66          |
|              |                            | LSD                      | 1.6                                 | 8.62 (2.4)                              | 0.99          |
| HTR1D        | 5-HT <sub>1D</sub>         | 5-HT                     | 3.4                                 | 7.16 (698)                              | 0.70          |
|              |                            | LSD                      | 3.4                                 | 8.39 (4.0)                              | 0.56          |
| HTR1E        | 5-HT <sub>1E</sub>         | 5-HT                     | 3.6                                 | 8.39 (4.0)                              | 0.94          |
|              |                            | LSD                      | 1.4                                 | 8.61 (2.4)                              | 0.98          |
| HTR1F        | 5-HT <sub>1F</sub>         | 5-HT                     | 77                                  | 7.27 (54.2)                             | 0.54          |
|              |                            | LSD                      | 13                                  | 7.75 (17.9)                             | 0.62          |
| HTR2A        | 5-HT <sub>2A</sub>         | 5-HT                     | 17                                  | 6.60 (254)                              | 0.79          |
|              |                            | LSD                      | 123                                 | 8.97 (1.1)                              | 0.66          |
| HTR2B        | 5-HT <sub>2B</sub>         | 5-HT                     | 2.7                                 | 8.65 (2.2)                              | 1.20          |
|              |                            | LSD                      | 1.7                                 | 8.95 (1.1)                              | 0.39          |
| HTR2C        | 5-HT <sub>2C</sub> INI     | 5-HT                     | 2.0                                 | 7.42 (38.4)                             | 0.92          |
|              |                            | LSD                      | 4.3                                 | 7.09 (81.4)                             | 0.43          |
|              | 5-HT <sub>2C</sub>         |                          |                                     |                                         | 0.49          |
|              | VGV                        | 5-HT                     |                                     | <4.50 (>30 μM)                          |               |
|              | 5-HT <sub>2C</sub>         | 5-HT                     | 37                                  | <4.50 (>30 μM)                          | 0.64          |
|              | VNV                        | LSD                      | 1.9                                 | 8.30 (5.1)                              | 0.79          |
|              | 5-HT <sub>2C</sub>         | 5-HT                     |                                     | <4.50 (>30 μM)                          | 0.69          |
|              | VSV                        | LSD                      | 1.6                                 | 8.89 (1.3)                              | 0.76          |
| HTR4         | 5-HT <sub>4</sub>          | 5-HT                     | 59                                  | 7.59 (25.7)                             | 1.18          |

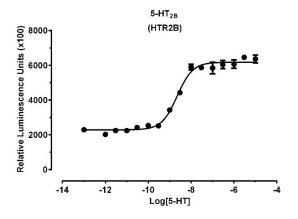
|        | IUPHAR              |                   | E <sub>max</sub> |                                         | Hill  |
|--------|---------------------|-------------------|------------------|-----------------------------------------|-------|
| Gene   | Receptor            | Agonists          | (fold of basal)  | pEC <sub>50</sub> (EC <sub>50</sub> nM) | slope |
| Name   | Name                | (references)      |                  |                                         |       |
| HTR4   | 5-HT <sub>4</sub>   | LSD               | 2.0              | 5.49 (3265)                             | 3.14  |
| HTR5A  | 5-HT <sub>5A</sub>  | 5-HT              | 11               | 8.06 (8.7)                              | 0.66  |
|        |                     | LSD               | 16               | 9.74 (0.18)                             | 0.71  |
| HTR6   | 5-HT <sub>6</sub>   | 5-HT              | 40               | 6.52 (301)                              | 0.93  |
|        |                     | LSD               | 16.1             | 8.65 (2.2)                              | 0.76  |
| HTR7A  | 5-HT <sub>7A</sub>  | 5-HT              | 1.9              | 7.13 (73.4)                             | 2.23  |
| CHRM1  | M <sub>1</sub>      | Acetylcholine     | 2.1              | 4.58                                    |       |
|        |                     | Carbachol         | 1.6              | 6.66 (218)                              | 0.74  |
|        |                     | Arecoline         | 3.7              | <5                                      |       |
| CHRM2  | $M_2$               | Acetylcholine     | 8.1              | 6.41                                    |       |
|        |                     | Carbachol         | 3.8              | 6.62 (243)                              | 0.96  |
|        |                     | Arecoline         | 23               | 5.67                                    |       |
| CHRM3  | M <sub>3</sub>      | Acetylcholine     | >10              | <5                                      |       |
|        |                     | Carbachol         | 18               | 5.36 (4388)                             | 0.90  |
|        |                     | Arecoline         | >10              | <5                                      |       |
|        | M <sub>3</sub> D    | CNO               | 27               | 7.68 (21.1)                             | 1.14  |
|        | M <sub>4</sub> D    | CNO               | 6.1              | 8.60 (2.5)                              | 1.01  |
| CHRM4  | M <sub>4</sub>      | Acetylcholine     | 11.5             | 5.61                                    |       |
|        |                     | Carbachol         | 35               | 5.62 (2428)                             | 1.06  |
|        |                     | Arecoline         | 33.8             | 5.62                                    |       |
| CHRM5  | <b>M</b> 5          | Acetylcholine     | <2               | <5                                      |       |
|        |                     | Carbachol         | 1.6              | 6.88 (131)                              | 1.36  |
|        |                     | Arecoline         | 8.9              | <5                                      |       |
| ADORA1 | A <sub>1</sub>      | NECA              | 4.8              | 7.93 (11.7)                             | 1.10  |
| ADRA1A | $lpha_{	exttt{1A}}$ | Oxymetazoline     | 3.6              | 7.97 (10.6)                             | 0.82  |
| ADRA1B | $lpha_{	t 1B}$      | Epinephrine       | 11               | 6.61 (244)                              | 0.90  |
| ADRA1D | $lpha_{	exttt{1D}}$ | Norepinephrine    | 7.6              | 5.95 (1118)                             | 1.49  |
| ADRA2A | $lpha_{\sf 2A}$     | Clonidine         | 5.4              | 8.36 (4.4)                              | 0.99  |
| ADRA2B | $\alpha_{2B}$       | Norepinephrine    | 8.9              | 7.20 (63.1)                             | 0.89  |
| ADRA2C | $lpha_{2C}$         | Clonidine         | 61               | 7.20 (63.3)                             | 1.30  |
| ADRB1  | ß₁                  | Epinephrine       | 22               | 5.74 (1838)                             | 2.06  |
| ADRB2  | ß <sub>2</sub>      | Epinephrine       | 17               | 6.21 (613)                              | 1.70  |
| ADRB3  | ß <sub>3</sub>      | Carvedilol        | 44               | 5.53 (2934)                             | 2.51  |
| AGTR1  | AT <sub>1</sub>     | Angiotensin II    | 13               | 7.95 (11.1)                             | 0.57  |
| APLNR  | Apelin              | Apelin-17         | 6.5              | 8.80 (1.6)                              | 0.68  |
| GPBAR1 | GPBA                | Taurodeoxycholate | >2.3             | <5                                      | ~0.85 |
| NMBR   | BB <sub>1</sub>     | Bombesin          | 4.6              | 7.06 (86.9)                             | 1.75  |

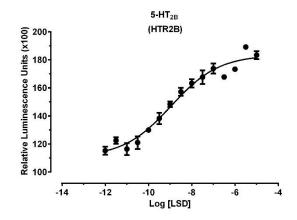
|        | IUPHAR              |                           | E <sub>max</sub> |                                         | Hill  |
|--------|---------------------|---------------------------|------------------|-----------------------------------------|-------|
| Gene   | Receptor            | Agonists                  | (fold of basal)  | pEC <sub>50</sub> (EC <sub>50</sub> nM) | slope |
| Name   | Name                | (references)              | ,                | ,,                                      | •     |
|        |                     | Gastrin-releasing peptide | 4.6              | 6.98 (105)                              | 2.00  |
|        |                     | (GRP)                     |                  |                                         |       |
|        |                     | Neuromedin B              | 6.0              | 8.68 (2.1)                              | 0.87  |
| GRPR   | BB <sub>2</sub>     | Bombesin                  | 6.2              | 8.50 (3.2)                              | 1.39  |
|        |                     | Gastrin-releasing peptide | 6.1              | 8.32 (4.8)                              | 1.21  |
|        |                     | (GRP)                     |                  |                                         |       |
|        |                     | Neuromedin B              | 5.3              | 7.49 (32.6)                             | 1.16  |
| BRS3   | BB <sub>3</sub>     | Saqvinavir (154)          | 7.5              | 7.22 (61.0)                             | 0.97  |
| BDKRB1 | B <sub>1</sub>      | Bradykinin                | 14               | 4.60 (25220)                            | 0.53  |
| BDKRB2 | B <sub>2</sub>      | Bradykinin                | 6.8              | 9.00 (1.0)                              | 0.65  |
| CNR1   | CB <sub>1</sub>     | WIN 55212-2               | 3.2              | 6.24 (583)                              | 3.04  |
|        |                     | CP55940                   | 19               | 7.07 (84.5)                             | 1.14  |
| CNR2   | CB <sub>2</sub>     | CP55940                   | 53               | 8.30 (5.0)                              | 1.44  |
| CCR6   | CCR6                | CCL20 (Exodus-1)          | 2.3              | 7.84 (14.6)                             | 1.07  |
| CXCR1  | CXCR1               | IL-8                      | 46               | 8.44 (3.7)                              | 0.72  |
|        |                     | CXCL6                     | 3.5              | 6.60 (252)                              | 0.99  |
|        |                     | CXCL8 (IL-8)              | 4.1              | 6.95 (111)                              | 1.05  |
| CXCR2  | CXCR2               | IL-8                      | 1.9              | 8.59                                    | 1.55  |
|        |                     | CXCL6                     | 2.6              | 6.49 (322)                              | 0.29  |
|        |                     | CXCL8 (IL-8)              | 2.3              | 6.35 (451)                              | 0.43  |
| CXCR4  | CXCR4               | CXCL12 (SDF1- $\alpha$ )  | 2.0              | 8.65 (2.2)                              | 1.14  |
| CXCR6  | CXCR6               | CXCL16 (SRPOX)            | >10              | <5                                      |       |
| ACKR3  | ACKR3               | CXCL12 (SDF1- $\alpha$ )  | 49               | 8.85 (1.4)                              | 1.66  |
| CX3CR1 | CX <sub>3</sub> CR1 | CX3CL1                    | 5.8              | 9.52 (0.3)                              | 2.87  |
| CCKAR  | CCK <sub>1</sub>    | [Thr28, Nle31]CCK(25-33)  | 3.4              | 7.50 (31.4)                             | 1.81  |
| C3AR1  | C3a                 | C3a (70-77)               | 22               | 6.24 (582)                              | 2.60  |
| DRD1   | $D_1$               | Cabergoline               | 17               | 4.69 (2033)                             | 0.73  |
| DRD2   | D <sub>2</sub>      | LSD                       | 68               | 9.29 (0.5)                              | 1.64  |
| DRD3   | D <sub>3</sub>      | Quinpirole                | 35               | 7.33 (46.3)                             | 0.75  |
| DRD4   | D <sub>4</sub>      | Lisuride                  | 5.5              | 7.05 (88.5)                             | 0.39  |
|        |                     | Quinpirole                | 7.0              | 6.61 (243)                              | 0.70  |
| DRD5   | D <sub>5</sub>      | LSD                       | 28               | 6.62 (238)                              | 1.39  |
| FPR1   | FPR1                | fMLP                      | 84               | 8.61 (2.5)                              | 0.88  |
| FPR2   | FPR2/ALX            | fMLP                      | >18              | <5                                      |       |
| FPR3   | FPR3                | fMLP                      | 1.2              | 6.61 (247)                              | 0.99  |
| GAL1   | $GAL_1$             | Galanin                   | 16               | 5.71 (1940)                             | 0.70  |
| GAL2   | GAL <sub>2</sub>    | Galnon                    | 3.6              | 8.29                                    |       |
| GAL3   | GAL <sub>3</sub>    | Galanin                   | 3.4              | 9.92 (1.2)                              | 1.63  |

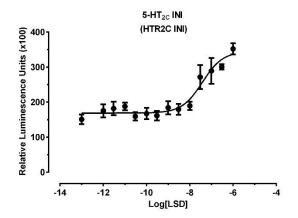
|         | IUPHAR             |                         | E <sub>max</sub> |                                         | Hill  |
|---------|--------------------|-------------------------|------------------|-----------------------------------------|-------|
| Gene    | Receptor           | Agonists                | (fold of basal)  | pEC <sub>50</sub> (EC <sub>50</sub> nM) | slope |
| Name    | Name               | (references)            |                  |                                         |       |
| GHSR    | Ghrelin            | Ghrelin                 | 1.8              | 7.10 (8.0)                              | 0.70  |
| GLP-1R  | GLP-1              | Glucagon                | 8.8              | <5                                      |       |
| SCTR    | Secretin           | Secretin                | 5.5              | 5.39 (4116)                             | 1.10  |
| GNRHR   | GnRH               | Leuprolide              | 2.8              | 8.43 (3.8)                              | 1.96  |
| CYSLTR1 | CysLT1             | Leukotriene D4          | 4.0              | 7.61 (24.8)                             | 1.82  |
| EDNRA   | EΤ <sub>A</sub>    | Endothelin-1            | 70               | 9.21 (0.6)                              | 1.03  |
| HRH1    | H <sub>1</sub>     | N-Methylhistaprodifen   | 1.3              | 7.19 (65.2)                             | 1.37  |
| HRH2    | H <sub>2</sub>     | Histamine               | 6.9              | 5.40 (3982)                             | 2.94  |
| HRH3    | H <sub>3</sub>     | N-Methylhistamine       | 21               | 7.71 (19.6)                             | 0.76  |
| HRH4    | H <sub>4</sub>     | Histamine               | 3.2              | 6.81 (155)                              | 0.94  |
| HCAR2   | HCA <sub>2</sub>   | Niacin                  | 1.9              | 5.11 (7729)                             | 0.71  |
| HCRTR1  | OX <sub>1</sub>    | Orexin-A                | 86               | 7.82 (15.3)                             | 1.53  |
| HCRTR2  | OX <sub>2</sub>    | Orexin-A                | 60               | 8.14 (7.2)                              | 1.94  |
| LTB4R   | BLT <sub>1</sub>   | Leukotriene D4          | 96               | 6.71 (196)                              | 0.61  |
|         | BLT <sub>1</sub> * | Leukotriene D4          | 28               | 7.55 (28.2)                             | 0.69  |
| LPAR1   | LPA <sub>1</sub>   | 1-oleoyl LPA            | 6.0              | 5.36 (4380)                             | 1.35  |
| LPAR2   | LPA <sub>2</sub>   | 1-oleoyl LPA            | 69               | <5                                      |       |
| LPAR5   | LPA <sub>5</sub>   | 1-oleoyl LPA            | 14               | <5                                      |       |
| S1PR1   | S1P <sub>1</sub>   | Sphingosine-1-phosphate | 9.3              | 5.46 (3435)                             | 0.67  |
| S1PR2   | S1P <sub>2</sub>   | Sphingosine-1-phosphate | >8               | <5                                      |       |
| S1PR3   | S1P <sub>3</sub>   | Sphingosine-1-phosphate | 17               | <5                                      |       |
| MCHR1   | MCH <sub>1</sub>   | [Ala-17]-MCH            | 6.9              | 7.67 (21)                               | 1.01  |
| MCHR2   | MCH <sub>2</sub>   | [Ala-17]-MCH            | 20               | 8.39 (4.1)                              | 0.90  |
| MC1R    | MC <sub>1</sub>    | α-MSH                   | 2.4              | 7.41 (38.5)                             | 1.64  |
| MC3R    | MC <sub>3</sub>    | Melanotan II            | 11               | 8.15 (7.1)                              | 0.87  |
| MC4R    | MC <sub>4</sub>    | ACTH                    | 4.6              | 6.14 (734)                              | 1.15  |
| MC5R    | MC <sub>5</sub>    | α-MSH                   | >1.7             | <5                                      |       |
| MTNR1A  | MT <sub>1</sub>    | Melatonin               | 15               | 10.81 (0.02)                            | 0.52  |
| MTNR1B  | MT <sub>2</sub>    | Melatonin               | 8.1              | 8.87 (1.3)                              | 0.61  |
| MLNR    | Motilin            | Motilin                 | 159              | 8.04 (9.2)                              | 0.97  |
| NMUR1   | NMU1               | Neuromedin S            | 34               | 8.04 (9.1)                              | 1.33  |
| NMUR2   | NMU2               | Neuromedin S            | 8.1              | 7.83 (14.9)                             | 1.05  |
| NPS     | NPS                | Neuropeptide S          | 44               | 6.25 (566)                              | 1.33  |
| NPBWR2  | NPBW2              | Neuropeptide W-23       | 35               | <5                                      |       |
| NPY1R   | Υ <sub>1</sub>     | Pancreatic polypeptide  | 3.9              | 9.27 (0.5)                              | 0.85  |
| NPY2R   | Y <sub>2</sub>     | Pancreatic polypeptide  | 23               | 8.73 (1.9)                              | 0.80  |
| NPY4R   | Y <sub>4</sub>     | Neuropeptide Y          | 1.9              | 7.44 (36.0)                             | 7.05  |
| NTSR2   | NTS <sub>2</sub>   | SR48692(154)            | 11               | 6.23 (589)                              | 1.04  |

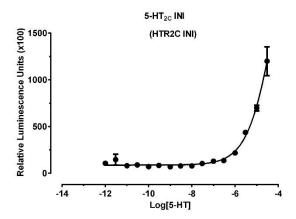

|        | IUPHAR            |                               | E <sub>max</sub> |                                         | Hill  |
|--------|-------------------|-------------------------------|------------------|-----------------------------------------|-------|
| Gene   | Receptor          | Agonists                      | (fold of basal)  | pEC <sub>50</sub> (EC <sub>50</sub> nM) | slope |
| Name   | Name              | (references)                  |                  |                                         |       |
| OPRD1  | δ (DOR)           | DADLE                         | 7.8              | 9.14 (0.7)                              | 0.84  |
| KOR    | κ (KOR)           | Salvinorin A                  | 9.3              | 7.49 (32.5)                             | 1.29  |
| OPRM1  | μ (MOR)           | Morphine                      | 10               |                                         |       |
| OPRL1  | NOP               | Orphanin                      | 110              | 7.92 (12.1)                             | 1.04  |
| P2RY1  | P2Y <sub>1</sub>  | 2-MeS-ADP                     | 46               | 5.31 (4957)                             | 0.69  |
| P2RY2  | P2Y <sub>2</sub>  | UTP                           | 44               | <5                                      |       |
| P2RY4  | P2Y <sub>4</sub>  | UTP                           | 5.9              | 5.13 (735)                              | 1.04  |
| P2RY6  | P2Y <sub>6</sub>  | UTP                           | 2.5              | 5.74 (1824)                             | 1.03  |
| P2YR11 | P2Y <sub>11</sub> | АТР                           | 4.7              | <5                                      |       |
| P2RY12 | P2Y <sub>12</sub> | 2-MeS-ADP                     | 46               | 7.34 (46.1)                             | 0.86  |
| P2RY13 | P2Y <sub>13</sub> | 2-MeS-ADP                     | 2.3              | 8.20 (6.3)                              | 0.48  |
| P2RY14 | P2Y <sub>14</sub> | UDP-Glucose                   | 1.6              | 6.16 (696)                              | 0.65  |
| PTHR1  | PTH1              | PTH (1-42)                    | 9.0              | 6.63 (234)                              | 1.05  |
| PTAFR  | PAF               | PAF (C16)                     | 1.3              | 9.32 (0.5)                              | 1.18  |
| PTGDR2 | DP <sub>2</sub>   | Prostaglandin D2              | 2.8              | 7.19 (64.9)                             | 1.21  |
| PTGER1 | EP <sub>1</sub>   | Prostaglandin E2              | 9.6              | 7.23 (59.5)                             | 0.73  |
| PTGER2 | EP <sub>2</sub>   | Prostaglandin E2              | 49               | 5.78 (1652)                             | 0.58  |
| PTGER3 | EP <sub>3</sub>   | Prostaglandin E2              | 3.7              | 8.14 (7.3)                              | 0.82  |
| PTGER4 | EP <sub>4</sub>   | Prostaglandin E2              | 29               | 8.92 (1.2)                              | 1.16  |
| PTGFR  | FP                | Prostaglandin F2α             | 26               | 6.98 (104)                              | 0.86  |
| PTGIR  | IP                | lloprost                      | 19               | <5                                      |       |
| SSTR1  | SST <sub>1</sub>  | Somatostatin                  | 9.6              | 5.47 (3372)                             | 0.64  |
| SSTR2  | SST <sub>2</sub>  | Somatostatin                  | 129              | 5.59 (2583)                             | 0.89  |
| SSTR3  | SST₃              | Somatostatin                  | 124              | 5.31 (4948)                             | 0.99  |
| SSTR4  | SST <sub>4</sub>  | Somatostatin                  | 72               | 5.93 (1175)                             | 0.87  |
| SSTR5  | SST <sub>5</sub>  | Somatostatin                  | 177              | 5.86 (1388)                             | 1.09  |
| TACR1  | $NK_1$            | Substance P                   | 3.0              | 6.74 (180)                              | 2.36  |
| TACR2  | $NK_2$            | Substance P                   | 15               | 8.72 (1.9)                              | 2.09  |
| TACR3  | NK <sub>3</sub>   | Substance P                   | 3.0              | 6.73 (187)                              | 2.28  |
| TA1    | TA <sub>1</sub>   | β-Phenylethylamine            | 4.5              | 3.96 (110 μM)                           | 1.63  |
| UTSR   | UT                | Urotensin II                  | 8.9              | 8.72 (1.9)                              | 1.47  |
| AVPR1A | $V_{1A}$          | Vasopressin                   | 145              | 8.58 (2.6)                              | 0.97  |
| AVPR1B | V <sub>1B</sub>   | Vasopressin                   | 8.9              | 8.65 (2.2)                              | 0.81  |
| AVPR2  | V <sub>2</sub>    | Vasopressin                   | 13               | 8.18 (6.6)                              | 0.72  |
| OXTR   | Oxytocin          | Oxytocin                      | 35               | 7.88 (13.2)                             | 0.92  |
| VIPR1  | VPAC <sub>1</sub> | Vasoactive Intestinal Peptide | 2.8              | 5.00 (10 μM)                            | 2.66  |
|        |                   | (VIP)                         |                  |                                         |       |

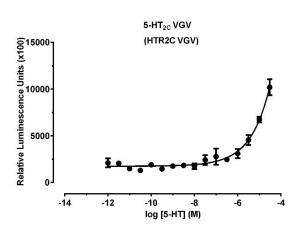

|         | IUPHAR            |                               | E <sub>max</sub> |                                         | Hill  |
|---------|-------------------|-------------------------------|------------------|-----------------------------------------|-------|
| Gene    | Receptor          | Agonists                      | (fold of basal)  | pEC <sub>50</sub> (EC <sub>50</sub> nM) | slope |
| Name    | Name              | (references)                  |                  |                                         |       |
| VIPR2   | VPAC <sub>2</sub> | Vasoactive Intestinal Peptide | >5               | <5                                      |       |
|         |                   | (VIP)                         |                  |                                         |       |
| GPR35   | GPR35             | PDSP reference#               | 4.5              | 7.59 (25.5)                             | 1.05  |
| GPR39   | GPR39             | GPR39-C3 (146-148)            | 209              | 5.98 (1052)                             | 0.57  |
| GPR55   | GPR55             | Rimonabant                    | >10              | <5                                      |       |
|         |                   | (SR141716)                    |                  |                                         |       |
| GPR183  | GPR183            | 7α,25-dihydroxy Cholesterol   | 60               | 7.32 (48.1)                             | 0.88  |
|         |                   | (170, 171)                    |                  |                                         |       |
| MAS1    | MAS1              | PDSP reference <sup>#</sup>   | 2.4              | 5.85 (1425)                             | 1.01  |
| MRGRPX1 | MRGPRX1           | PDSP reference#               | 1.5              | <5                                      |       |
| MRGRPX2 | MRGPRX2           | TAN-67 (153)                  | 3.1              | 5.73 (1880)                             | 1.11  |
| MRGRPX4 | MRGPRX4           | Nateglinide (154)             | 38               | 6.37 (423)                              | 1.78  |
|         |                   |                               |                  |                                         |       |
|         |                   |                               |                  |                                         |       |

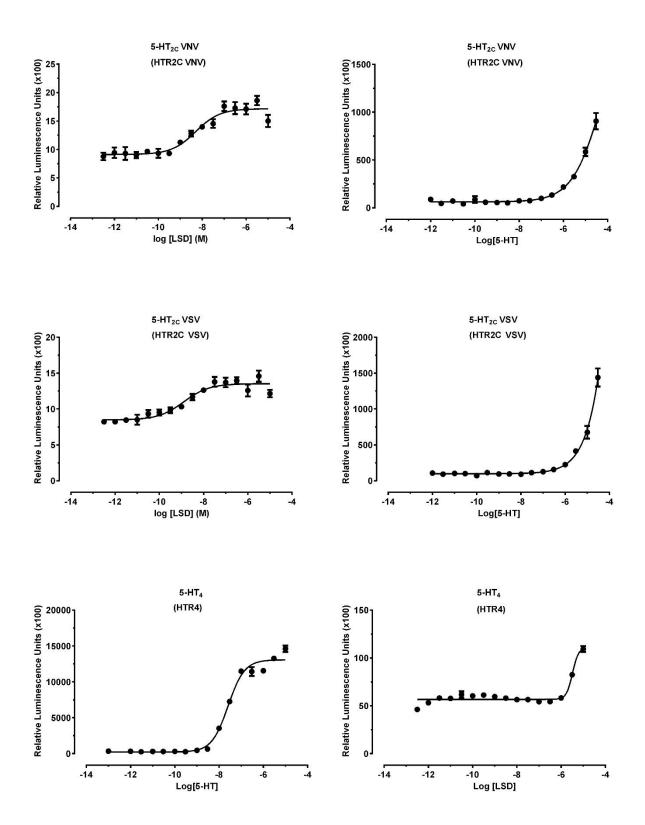

## Notes

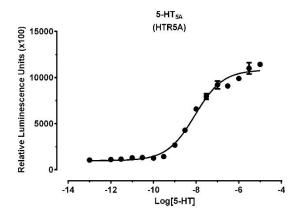

- 1. \* Modified Tango construct without V2 tail
- 2. # Roth lab unpublished results

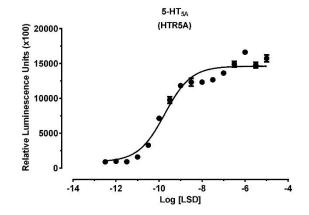

Figure 48. Representative agonist dose-response curves for GPCR mediated ß-arrestin translocation.

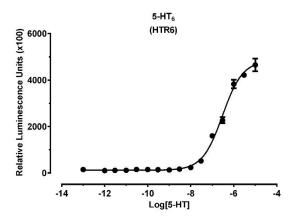


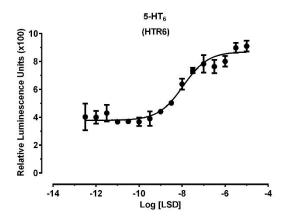



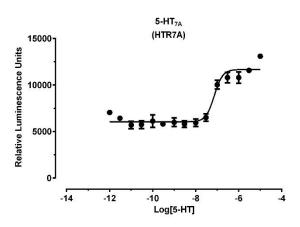



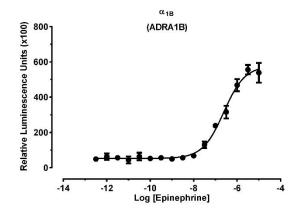



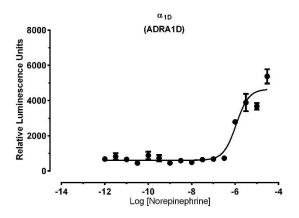



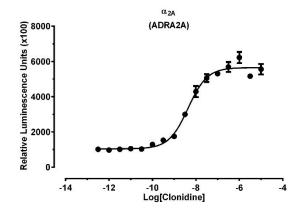



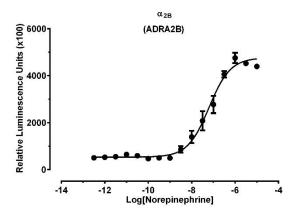



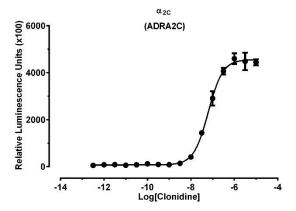


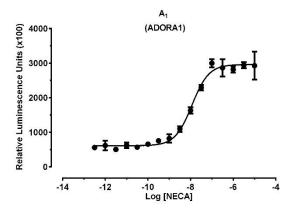



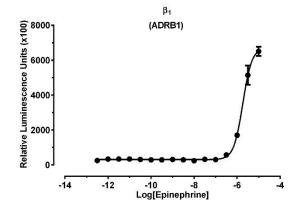



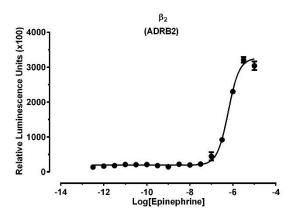



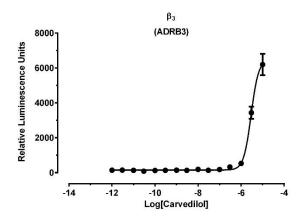



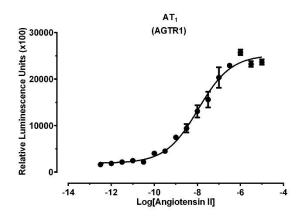



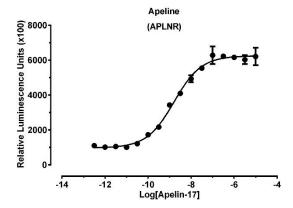



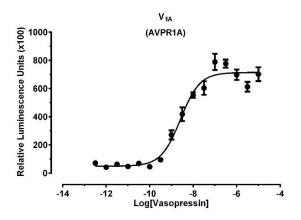



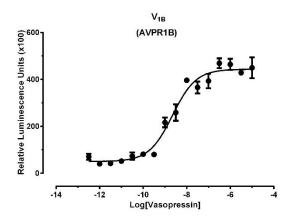



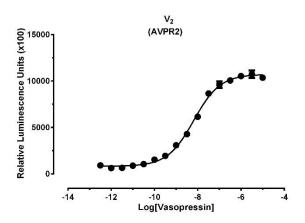



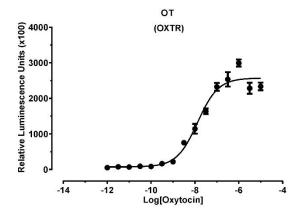



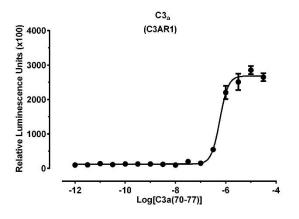



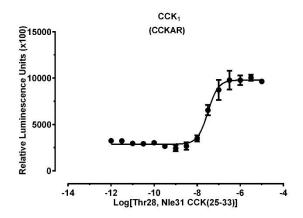



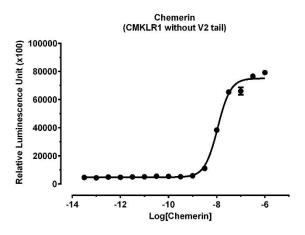



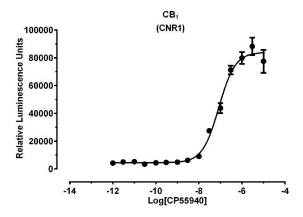



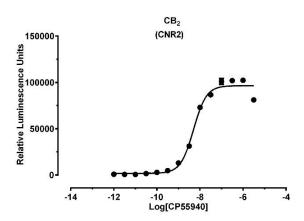



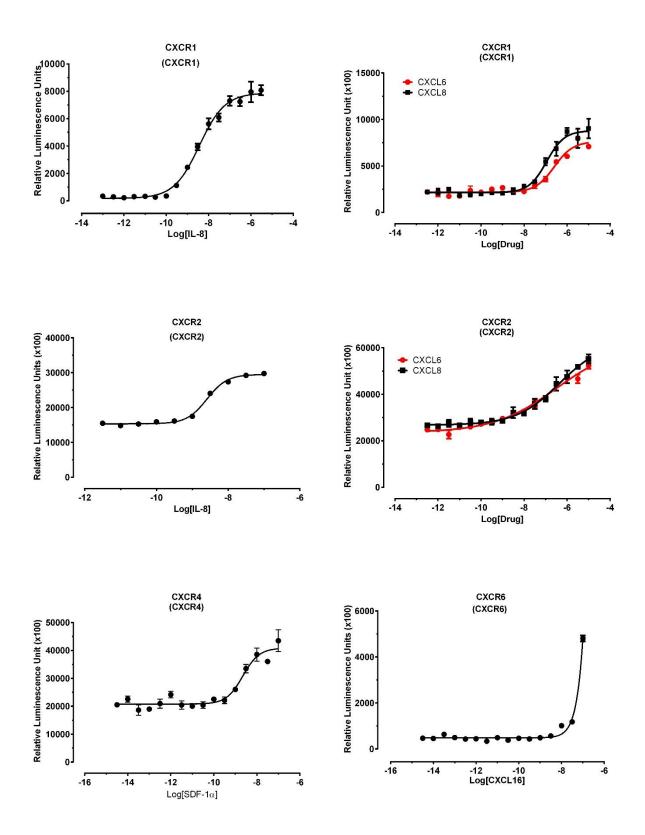



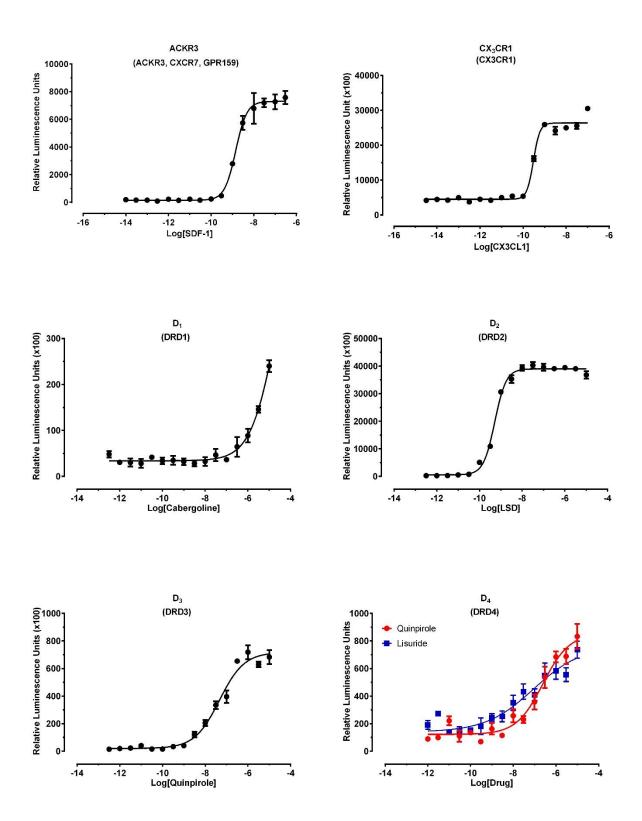



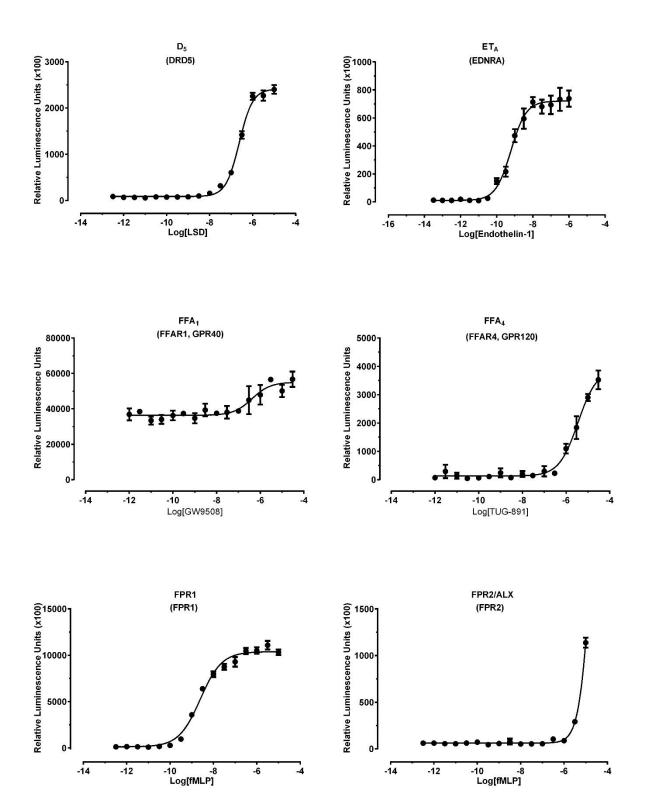



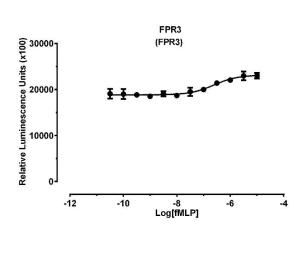



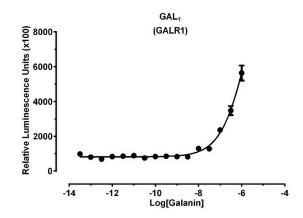



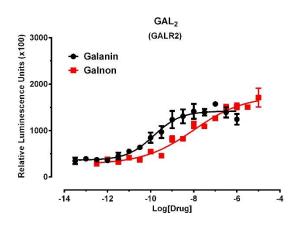



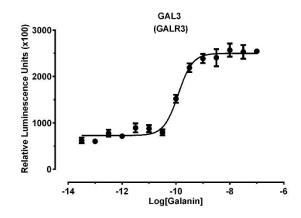



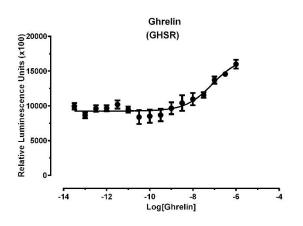



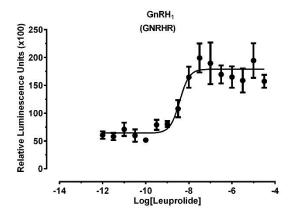



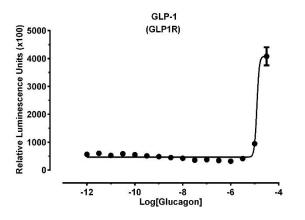



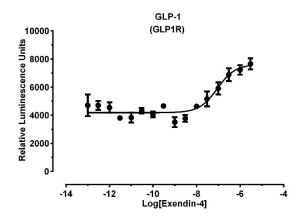



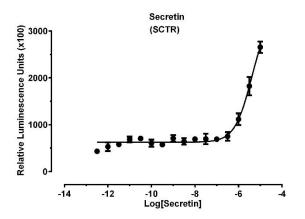



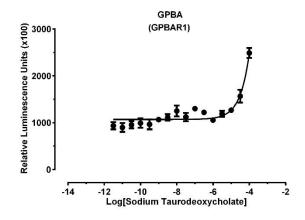



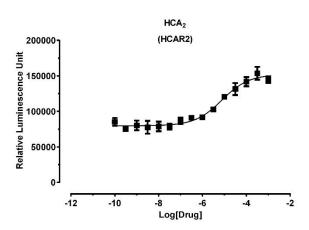



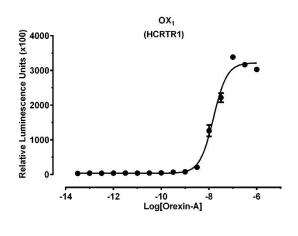



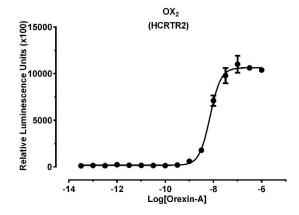



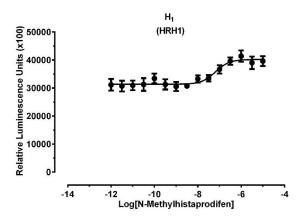



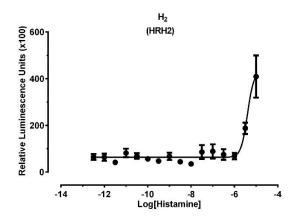



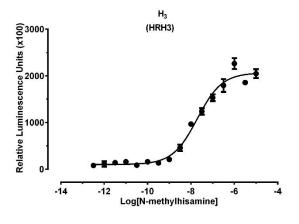



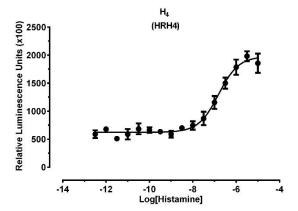



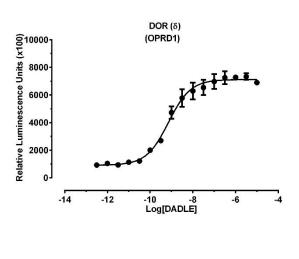



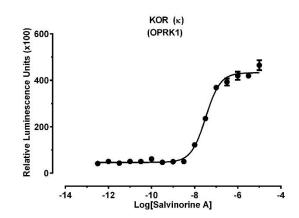



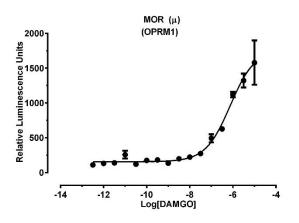



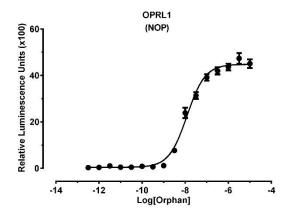



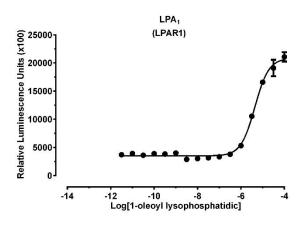



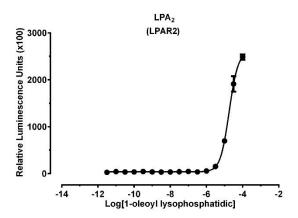



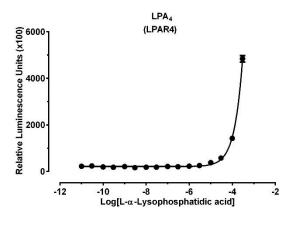



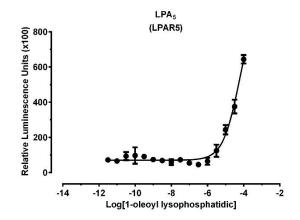



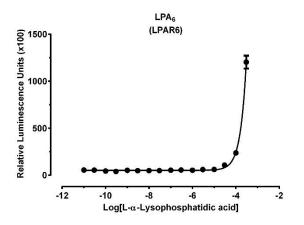



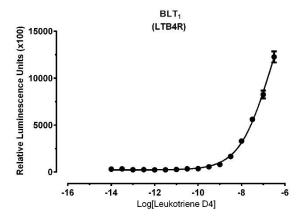



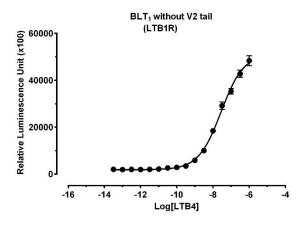



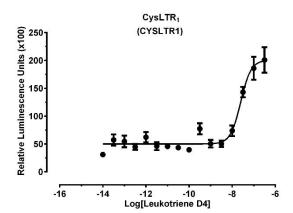



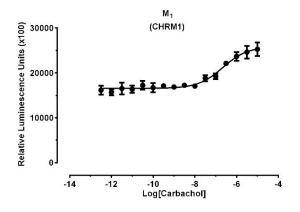



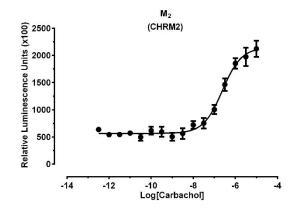



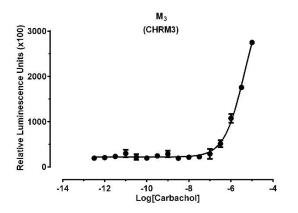



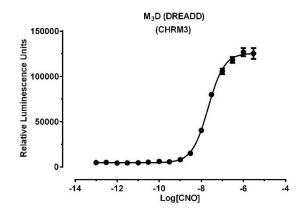



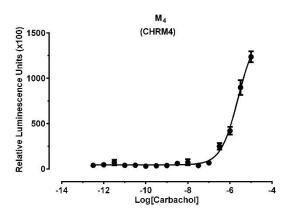



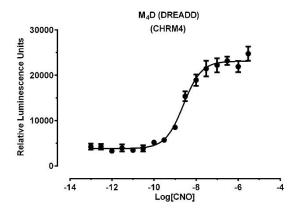



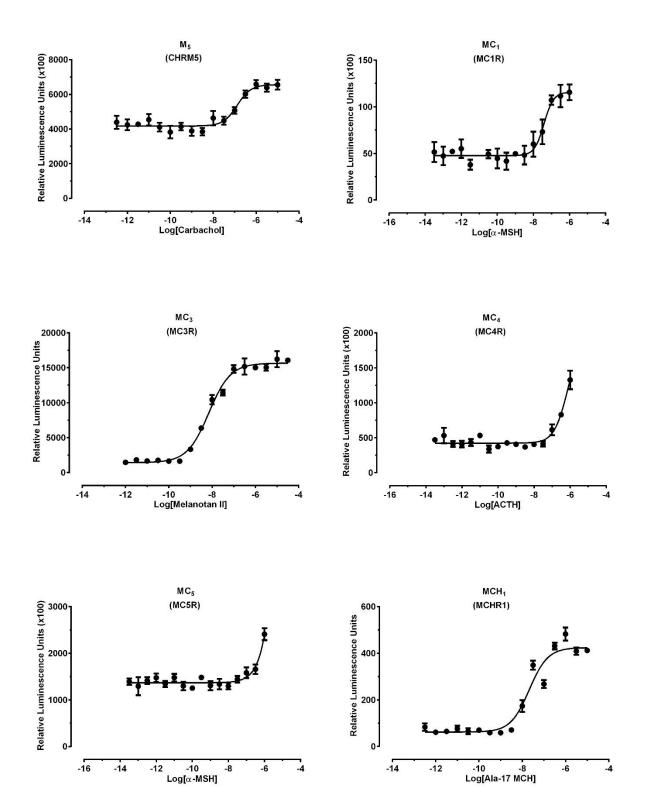



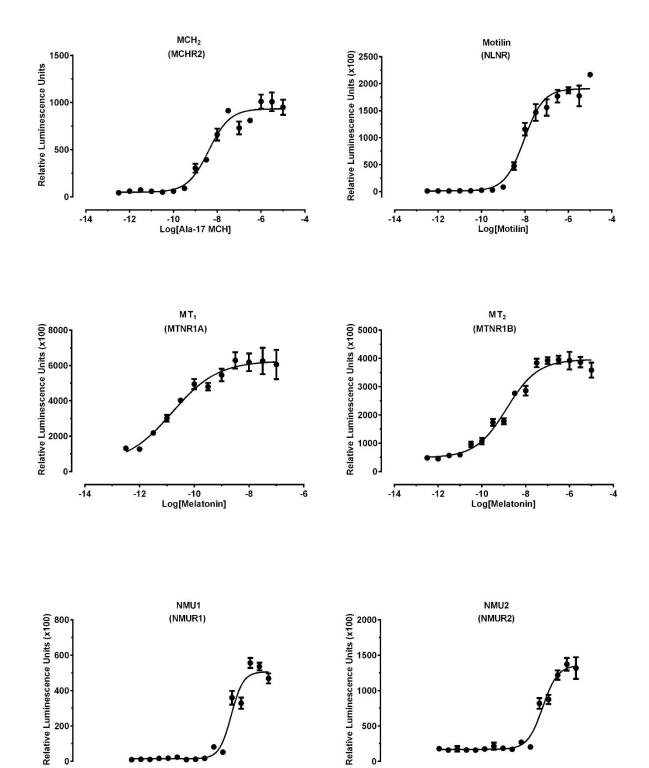









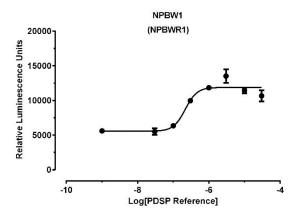


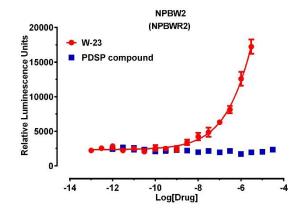


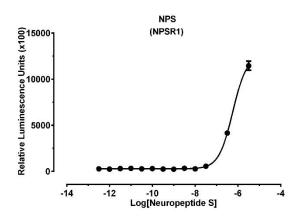

-12 -10 -8 Log[Neuromedin S]

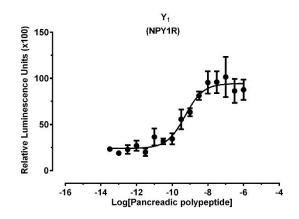
-6

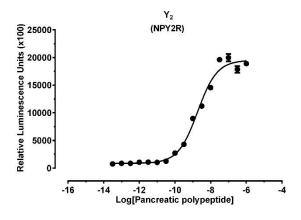
-16

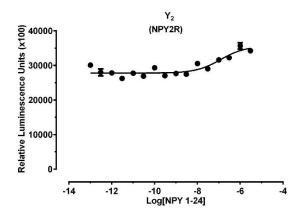

-14

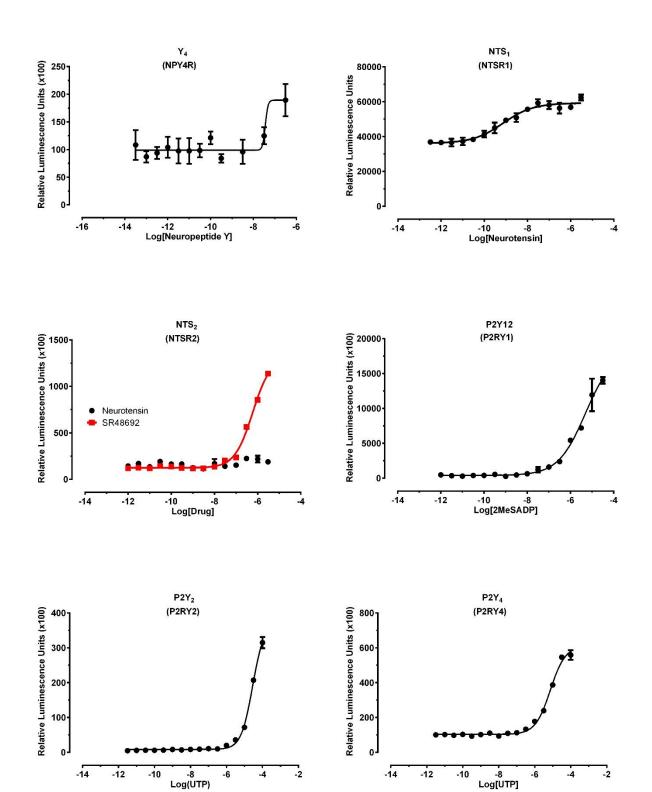

-12 -10 -8 Log[Neuromedin S]

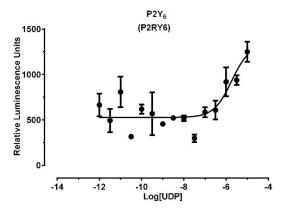

-6

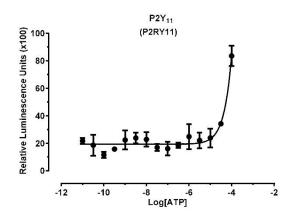

-16

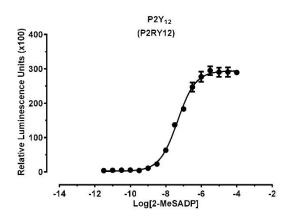

-14

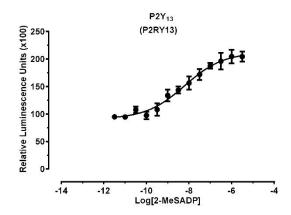


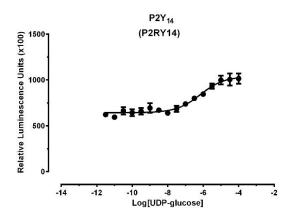



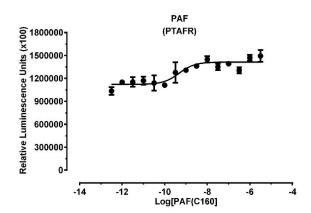



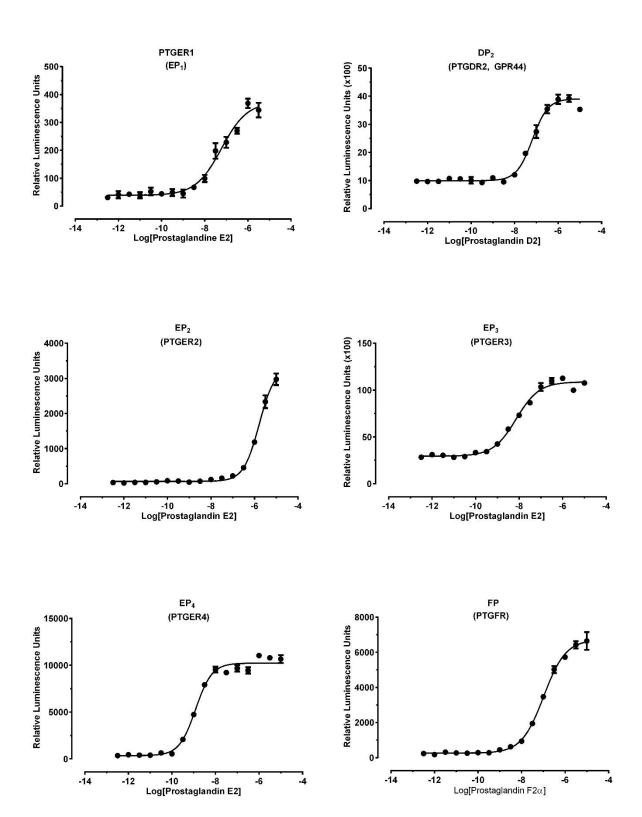



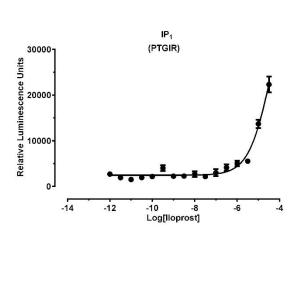



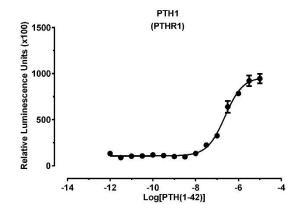



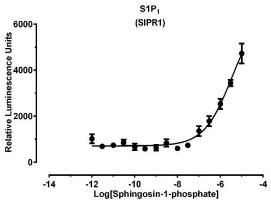



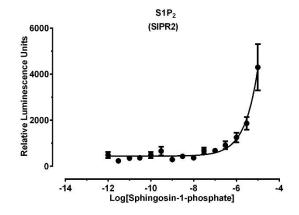



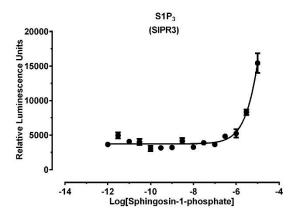



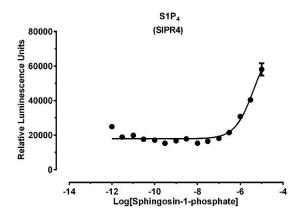



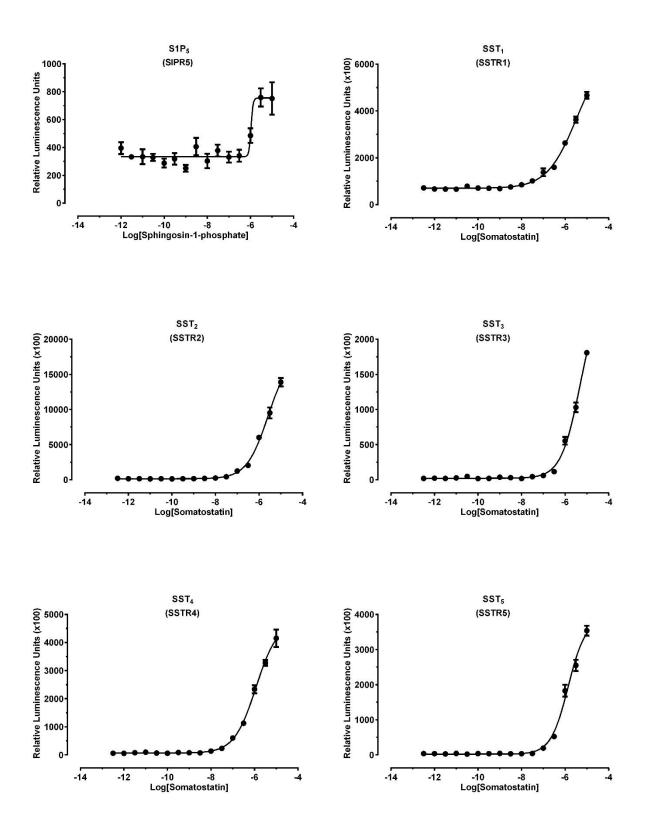



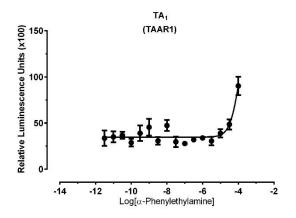



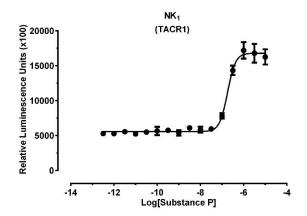



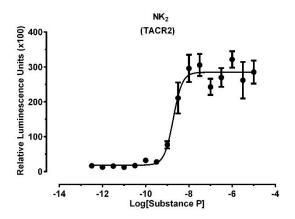



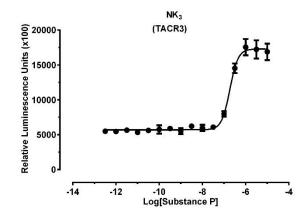



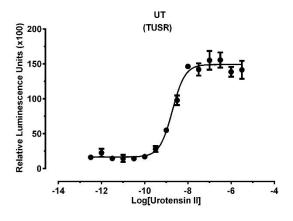



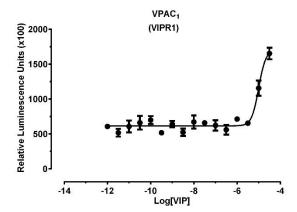



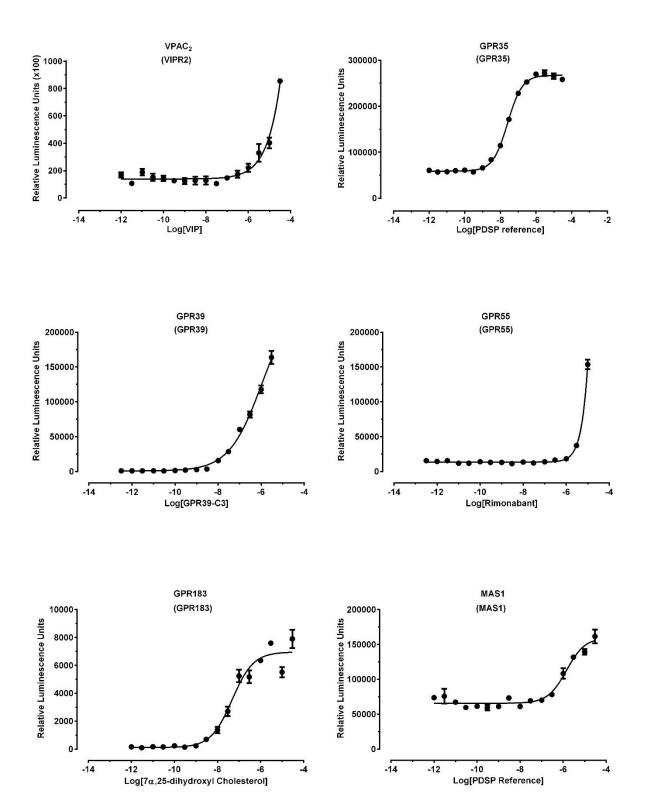



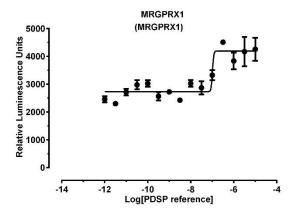



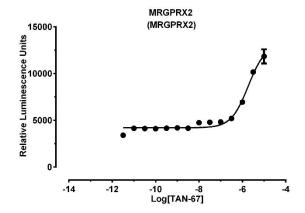



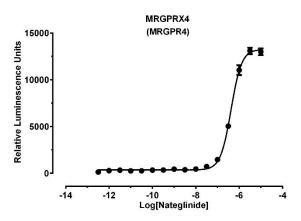





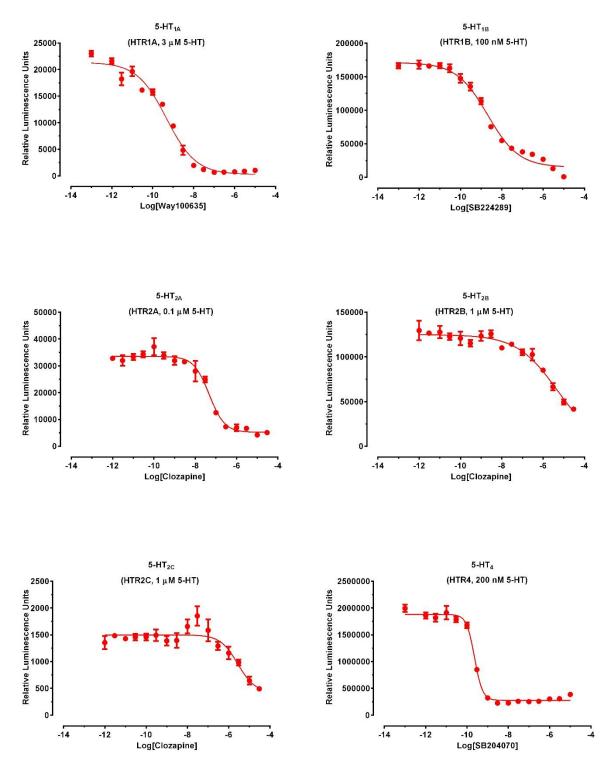


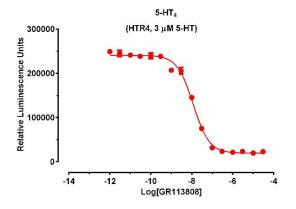


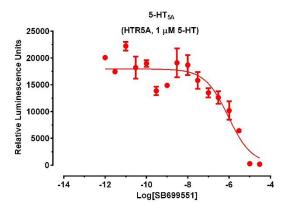


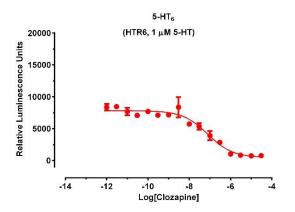


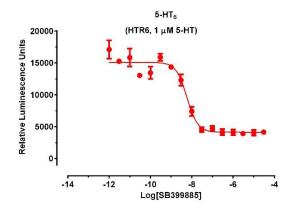

**Table 31**. List of GPCR Tango constructs with representative antagonist activity assay conditions. Results are analyzed in GraphPad Prism 6.0. Representative curves are attached below in **Figure 49**. PDSP will develop Tango antagonist assays for other GPCRs upon request and approval, as long as reference agonist(s) and antagonist(s) are provided or commercially available. E<sub>max</sub> lists the ratio of the top over bottom from the corresponding curves as an indication of signal windows, which is dependent on the concentration of reference agonist for antagonist assay.

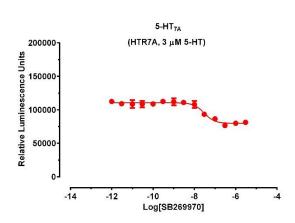

Note: # = Roth lab unpublished results.

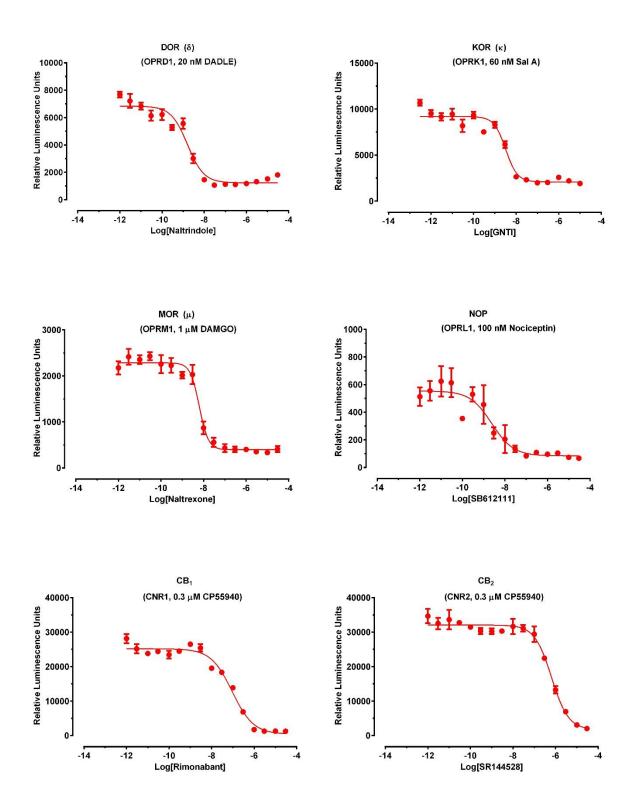

| Gene<br>Name | IUPHAR<br>Receptor<br>Name | Reference agonist<br>Reference antagonist | E <sub>max</sub><br>(fold of basal) | pIC <sub>50</sub> (IC <sub>50</sub> nM) | Hill<br>slope |  |
|--------------|----------------------------|-------------------------------------------|-------------------------------------|-----------------------------------------|---------------|--|
| HTR1A        | 5-HT <sub>1A</sub>         | 5-HT (3 μM)<br>Way100635                  | 83                                  | 9.33 (0.47)                             | -0.60         |  |
| HTR1B        | 5-HT <sub>1B</sub>         | 5-HT (10 nM)<br>SB224289                  | 114                                 | 8.68 (2.1)                              | -0.58         |  |
| HTR2A        | 5-HT <sub>2A</sub>         | 5-HT (0.1 μM)<br>Clozapine                | 6.5                                 | 7.33 (47.0)                             | -1.16         |  |
| HTR2B        | 5-HT <sub>2B</sub>         | 5-HT (1 μM)<br>Clozapine                  | 242                                 | 5.31 (4853)                             | -0.44         |  |
| HTR2C        | 5-HT <sub>2C</sub>         | 5-HT (1 μM)<br>Clozapine                  | 3.5                                 | 5.57 (2709)                             | -1.03         |  |
| HTR4         | 5-HT₄                      | 5-HT (200 nM)<br>SB204070                 | 6.8                                 | 9.63 (2.3)                              | -2.24         |  |
|              |                            | 5-HT (3 μM)<br>GR113808                   | 12                                  | 7.93 (11.8)                             | -1.11         |  |
| HTR5A        | 5-HT <sub>5A</sub>         | 5-HT (1 μM)<br>SB699551                   | 98                                  | 6.04 (91.3)                             | -0.77         |  |
| HTR6         | 5-HT6                      | 5-HT (1 μM)<br>Clozapine                  | 16                                  | 7.11 (77.9)                             | -072          |  |
|              |                            | 5-HT (1 μM)<br>SB399885                   | 3.7                                 | 8.24 (5.8)                              | -1.65         |  |
| HTR7A        | 5-HT <sub>7A</sub>         | 5-HT (1 μM)<br>SB269970                   | 1.4                                 | 7.52 (30.2)                             | -1.73         |  |
| CHRM1        | M <sub>1</sub>             | Carbachol (10 μM)<br>Atropine             | 72                                  | 7.03 (93.0)                             | -0.85         |  |
| CHRM2        | M <sub>2</sub>             | Carbachol (1 μM)<br>NMS                   | 11                                  | 8,87 (1.3)                              | -1.13         |  |
| CHRM3        | M <sub>3</sub>             | Carbachol (3 μM)<br>NMS                   | 47 9.58 (0.3)                       |                                         |               |  |
| CHRM4        | M <sub>4</sub>             | Carbachol (1 μM)                          | 413                                 | 10.55 (0.03)                            | -1.40         |  |

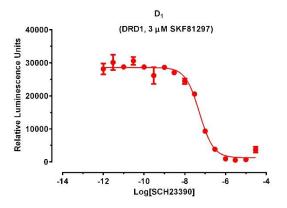

| Gene        | IUPHAR                | Reference agonist           | E <sub>max</sub> |                                         | Hill  |
|-------------|-----------------------|-----------------------------|------------------|-----------------------------------------|-------|
| Name        | Receptor              | Reference antagonist        | (fold of basal)  | pIC <sub>50</sub> (IC <sub>50</sub> nM) | slope |
|             | Name                  | C                           |                  | , , , , ,                               | •     |
|             |                       | Atropine                    |                  |                                         |       |
| CHRM5       | $M_5$                 | Carbachol (10 μM)           | 2.8              | 8.97 (1.1)                              | -0.88 |
|             |                       | NMS                         |                  |                                         |       |
| DRD1        | $D_\mathtt{1}$        | SKF81297 (3 μM)             | 23               | 7.28 (52.4)                             | -1.27 |
|             |                       | SCH23390                    |                  |                                         |       |
| DRD2        | $D_2$                 | Quinpirole (10 nM)          | 24               | 8.90 (1.3)                              | -2.31 |
|             |                       | Haloperidol                 |                  |                                         |       |
| DRD3        | D <sub>3</sub>        | Quinpirole (100 nM)         | 58               | 7.38 (41.5)                             | -1.16 |
| 5554        |                       | Haloperidol                 | 2.6              | 6.00 (4.60)                             | 2.04  |
| DRD4        | $D_4$                 | Lisuride (100 nM)           | 3.6              | 6.80 (160)                              | -2.91 |
| DRD5        | D-                    | Nemonapride                 | 22               | 6.00 (103)                              | -1.07 |
| כטאט        | <b>D</b> <sub>5</sub> | SKF81297 (3 μM)<br>SCH23390 | 22               | 6.99 (103)                              | -1.07 |
| ADRA1A      | $lpha_{	exttt{1A}}$   | Norepinephrine (1 μM)       | 2.0              | 7.63 (23.3)                             | -0.88 |
| ADIMIA      | $\alpha_{1A}$         | Prazosin                    | 2.0              | 7.03 (23.3)                             | 0.88  |
| ADRA1B      | α <sub>1B</sub>       | Norepinephrine (1 μM)       | 5.8              | 8.99 (1.0)                              | -1.19 |
| 71510125    | αıв                   | Prazosin                    |                  | 0.55 (2.0)                              | 1.13  |
| ADRA1D      | $lpha_{	exttt{1D}}$   | Norepinephrine (1 μM)       | 5.6              | 9.60 (0.3)                              | -1.17 |
|             |                       | Prazosin                    |                  |                                         |       |
| ADRA2A      | $lpha_{\sf 2A}$       | Norepinephrine (300 nM)     | 10               | 8.58 (2.6)                              | -0.97 |
|             |                       | Rauwolscine                 |                  |                                         |       |
| ADRA2B      | $lpha_{2B}$           | Norepinephrine (300 nM)     | 7.3              | 7.29 (51.9)                             | -0.94 |
|             |                       | Rauwolscine                 |                  |                                         |       |
| ADRA2C      | $lpha_{2C}$           | Clonidine (300 nM)          | 42               | 7.94 (11.4)                             | -1.06 |
|             |                       | Rauwolscine                 |                  |                                         |       |
| ADRB1       | $eta_1$               | Norepinephrine (10 μM)      | 28               | 8.56 (2.8)                              | -1.02 |
| 45550       |                       | Carvedilol                  | 60               | 0.45 (0.7)                              | 0.70  |
| ADRB2       | $\beta_1$             | Norepinephrine (10 μM)      | 63               | 9.15 (0.7)                              | -0.70 |
| 4 D O D 4 1 | Δ.                    | Carvedilol                  | 44               | 7.46 (24.6)                             | 0.00  |
| ADORA1      | $A_1$                 | NECA (100 nM)<br>CGS15943   | 44               | 7.46 (34.6)                             | -0.88 |
| CNR1        | CB <sub>1</sub>       | CP55940 (300 nM)            | 59               | 7.03 (92.8)                             | -0.87 |
| CIVILI      | CDI                   | Rimonabant                  | 39               | 7.03 (92.8)                             | -0.87 |
| CNR2        | CB <sub>2</sub>       | JWH-018 (300 nM)            | 18               | 6.19 (651)                              | -1.09 |
| J           | <b>35</b> 2           | SR144528                    |                  | (32-7)                                  |       |
|             |                       |                             |                  |                                         |       |
| HRH1        | H <sub>1</sub>        | Histamine (1 μM)            | 2.2              | 6.53 (294)                              | -0.98 |
|             |                       | Pyrilamine                  |                  |                                         |       |
| MLNR        | Motilin               | Motilin (1 μM)              | 44               | 8.47 (3.4)                              | -1.17 |

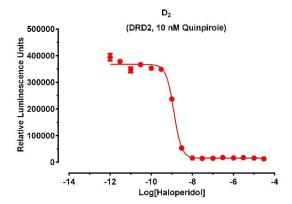

| Gene<br>Name | IUPHAR<br>Receptor<br>Name | Reference agonist<br>Reference antagonist | E <sub>max</sub><br>(fold of basal) | pIC <sub>50</sub> (IC <sub>50</sub> nM) | Hill<br>slope |
|--------------|----------------------------|-------------------------------------------|-------------------------------------|-----------------------------------------|---------------|
|              |                            | MS 2029                                   |                                     |                                         |               |
| NMUR2        | NMU2                       | Neuromedin S (1 μM)<br>PDSP reference#    | 2.2                                 | 7.23 (59.6)                             | -0.75         |
| OPRD1        | DOR (δ)                    | DADLE (20 nM)<br>Naltrindole              | 5.5                                 | 8.79 (1.6)                              | -1.12         |
| OPRK1        | KOR (κ)                    | Salvinorin A (60 nM)<br>GNTI              | 4.4                                 | 8.49 (3.2)                              | -1.58         |
| OPRM1        | MOR (μ)                    | DAMGO (1 μM)<br>Naltrexone                | 5.8                                 | 8.20 (6.3)                              | -2.04         |
| OPRL1        | NOP                        | Nociceptin (100 nM)<br>SB612111           | 6.6                                 | 8.62 (2.4)                              | -0.85         |
| OXTR         | ОТ                         | Oxytocin (3 μM)<br>PDSP reference#        | 15                                  | 5.89 (1299)                             | -0.92         |
| P2RY1        | P2Y₁                       | 2MeS-ADP (3 μM)<br>MRS 2179               | 4.6                                 | 6.26 (546)                              | -0.61         |
| P2RY2        | P2Y <sub>2</sub>           | UTP (10 μM)<br>AR-C 118925XX              | 4.5                                 | 6.39 (408)                              | -0.82         |
| PTGER4       | EP4                        | Prostaglandin E2 (10 nM)<br>L-161982      | 1.9                                 | 7.49 (32.1)                             | -1.25         |
|              |                            |                                           |                                     |                                         |               |

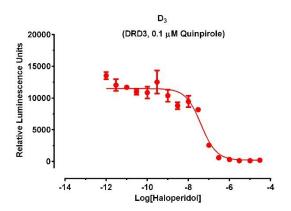

Figure 49. Representative curves for GPCR Tango antagonist assays.

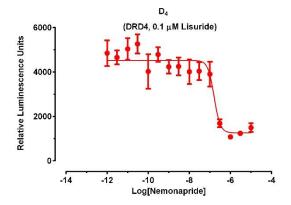


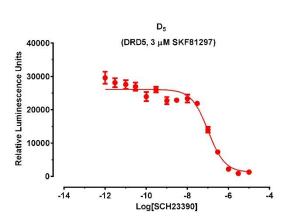



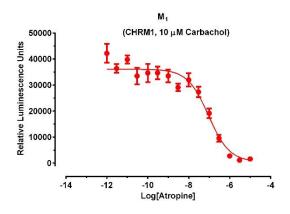



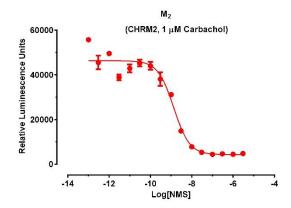



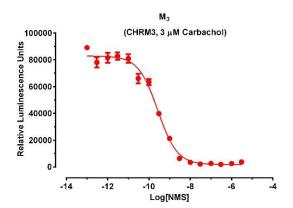



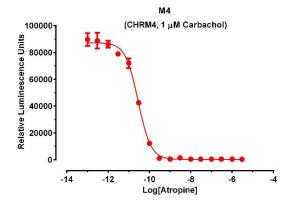



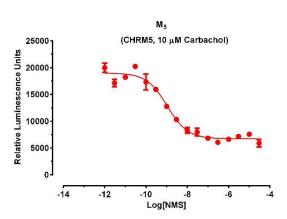



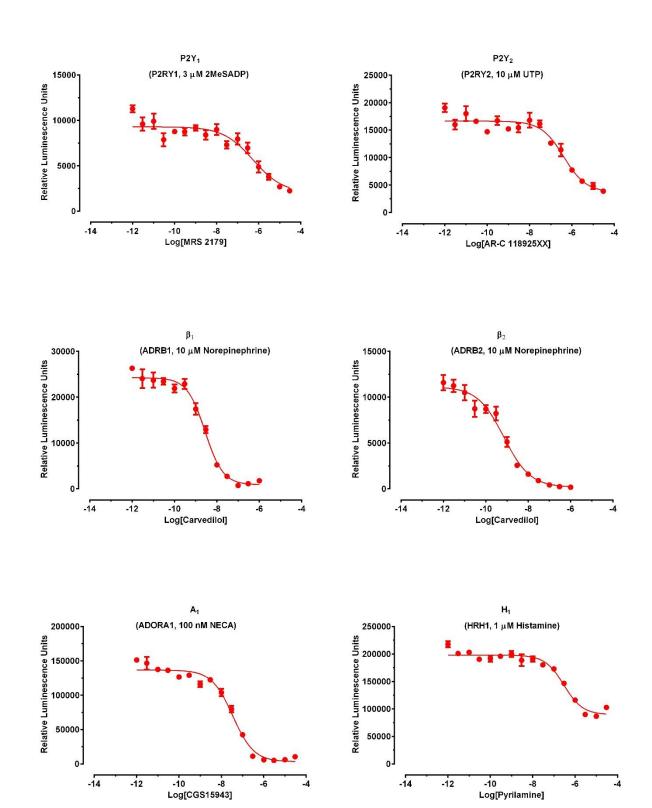



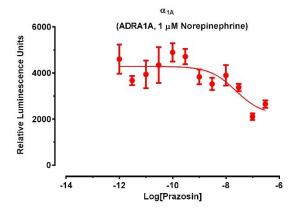



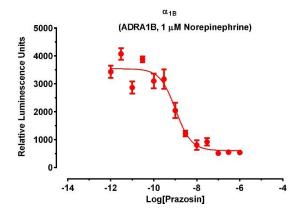



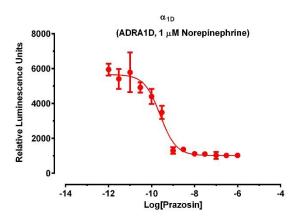



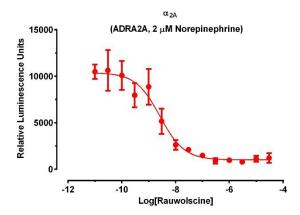



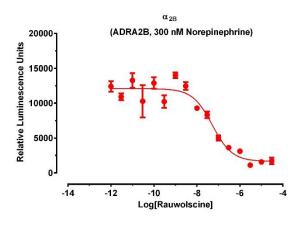



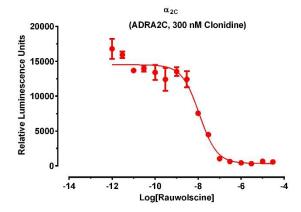



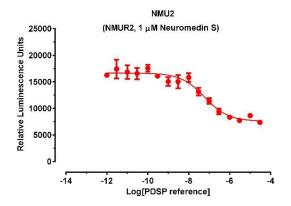



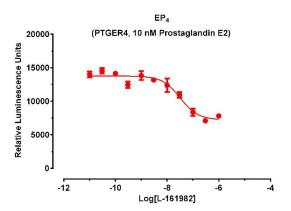



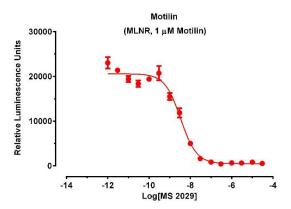














## 2.7. PRESTO-Tango GPCRome screening

Main equipment: Liquid handling workstation for 96- and 384-well plates, luminescence counter

Main reagent: BrightGlo® from Promega

Assay buffer: 20 mM HEPES, 1x HBSS, pH 7.40

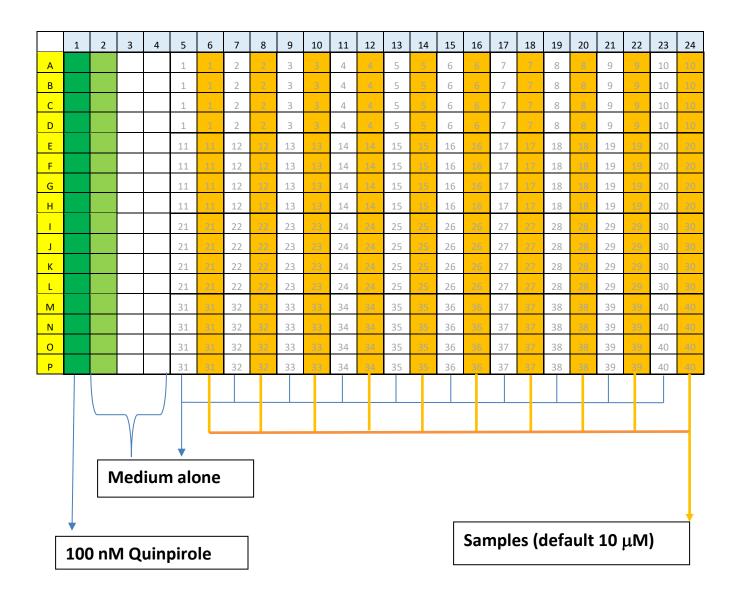
**2.7.1. Cell culture**. HTLA cells (a gift from Dr. Richard Axel), stably expressing a tTA-dependent luciferase reporter and a  $\beta$ -arrestin2-TEV protease fusion gene, are maintained in DMEM supplemented with 10% FBS, pen-strep, and 2 µg/ml Puromycin and 100 µg/ml Hygromycin. To set up the cells for transfection, HTLA cells are plated in DMEM supplemented with 10% dialyzed FBS in Poly-L-Lys (PLL)-coated 384-well white clear bottom cell culture plates at a density of 10,000 cells in a volume of 40 µl per well and incubated overnight. At least 1hr before transfections (below), we feed the cells with 10 µl/well DMEM supplemented with 50% FBS, using a Multidrop automated liquid dispenser.

- 2.7.2. DNA plate. Each single DNA plasmid is plated using the liquid handling workstation in one well of a 96-well plate at 0.5 μg/well (20 ng per well in 384-well plate and 8 wells per DNA, usually for 10x 384-well plates, see Fig 50 and 51 for DNA plate designs). Each plate includes 80 receptor DNA samples, assay controls in column 1 with DRD2 and negative controls in column 2 with buffer. DNA plates, if not used immediately, can be dried in a cell culture hood for storage at (-20°C). Immediately before transfection (see below), DNA samples are resuspended in 0.25 M CaCl<sub>2</sub> and manually transferred into 384-well plates with an equal volume of 2x HBS for transfection (see Figs 50 and 51 for DNA map in 96-and 384-well plates) followed by the next step for transfection (see below).
- 2.7.3. Transfection using Calcium phosphate precipitation protocol. HTLA cells are set up as indicated above overnight before transfection. The following protocol is designed for transfection on the following scale: one 384-well DNA plate (**Fig 51**) provides DNA for a total of 10 384-well cell plates. Briefly, the plated DNA in a 96-well plate (**Fig 50**) is first resuspended with 0.25 M CaCl<sub>2</sub> to a final volume of 380  $\mu$ l/well and manually aliquoted into a 384-well plate (**Figure 51**), 45  $\mu$ l/well for a total of 8 wells, to mix with equal volume of 2x HBS (50 mM HEPES, 280 mM NaCl, 10 mM KCl, 1.5 mM Na<sub>2</sub>HPO<sub>4</sub>, pH 7.00). We then use Hamilton Microlab Star with a 384-well pipette head to transfer

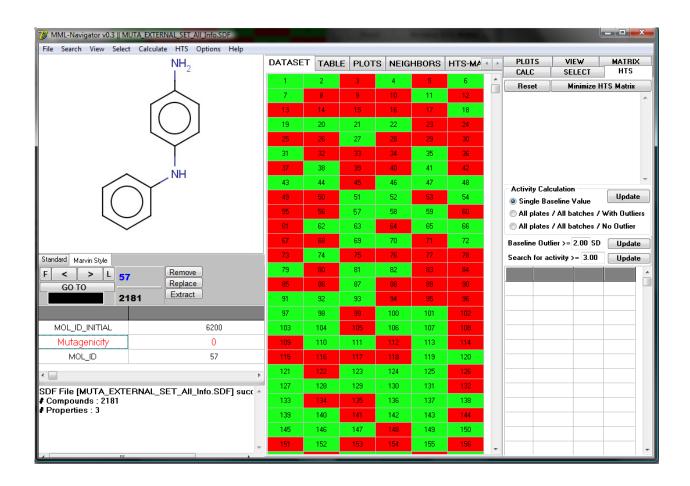
 $6~\mu$ l/well of DNA/CaCl<sub>2</sub>/HBS mixture into each of 10 384-well cell plates. A mixing step (10  $\mu$ l x 5-time up and down pipetting) is programmed into the transfection procedure before each transfer. Each 384-well DNA plate is usually used within 20 min after being mixed with 2x HBA solutions. Transfected cells are returned to the incubator for overnight incubation. Under this setting, DNA samples from rows A-D in a 96-well DNA plate are made into a 384-well plate, therefore each 96-DNA plate is sufficient for 2 different 384-well plate layouts. One GPCRome (up to 320 Tango constructs) screening for each compound consists of a total of 8 384-well assay plates, with each receptor being screened in quadruplicate. Thus, a total of eighty 384-well assay plates are needed for a routine screening with 10 PDSP compound samples.

- **2.7.4. Compound addition and incubation**. After overnight transfection and incubation, cells are removed from medium and receive 40  $\mu$ l/well fresh DMEM supplemented with 1% dFBS about 2 hrs before compound stimulation. To make drug plates (**Fig 52**), the assay control quinpirole is added into column 1 (where the dopamine DRD2 receptor is expressed), the medium negative control is in columns 2-4 and all the odd numbered columns in a 384-well plate, while test sample is added into all the even numbered columns from 6-24 in the 384-well plate. Compounds and assay control (quinpirole) are made in DMEM with 1% dFBS at 5x working concentration, 105  $\mu$ l/well. Drugs are transferred using the Hamilton Microlab Star with a 384-well pipetting head again, 10  $\mu$ l/well, one drug plate for eight 384-well cell plates. Assay plates are then incubated overnight at 37°C. The following day, medium and drug solutions are removed and 20  $\mu$ l per well of BrightGlo reagent (diluted 20-fold with Tango assay buffer) are added. Plates are incubated for 20 minutes at room temperature in the dark before luminescence is measured.
- **2.7.5. Data processing and analysis.** The luminescence counter records relative luminescence units (RLU) and saves files in 384-well format in Excel sheets for easy processing. The GPCRrome screening assay is designed to have 4 replicate wells for samples and 4 replicate wells for basal levels for each construct. In each assay plate, the average background (columns 3-4, usually around 50 RLU) is shared for all constructs in the same plate. Results are expressed in the fold of corresponding average basal, calculated according to the following formula:

$$Fold \ of \ basal = \frac{\text{(Sample RLU)} - \text{(Avg background RLU)}}{\text{(Avg basal RLU)} - \text{(Avg background RLU)}}$$


In general, the assay control, DRD2 with 100 nM quinpirole, shows 30x to 100x of basal activity, while the activity seen with most ligand-receptor combinations generally ranges from 0.5x to 2.0x fold of basal. Usually, follow-up studies are not done when the observed activity is less than 3.0x fold of basal. An activity of <0.5x fold of basal, if corresponding basal activity is relatively high, can be a sign of inverse agonist activity, and will be recommended for followup assays. See **Figures 54-55** for representative GPCRome screening results.

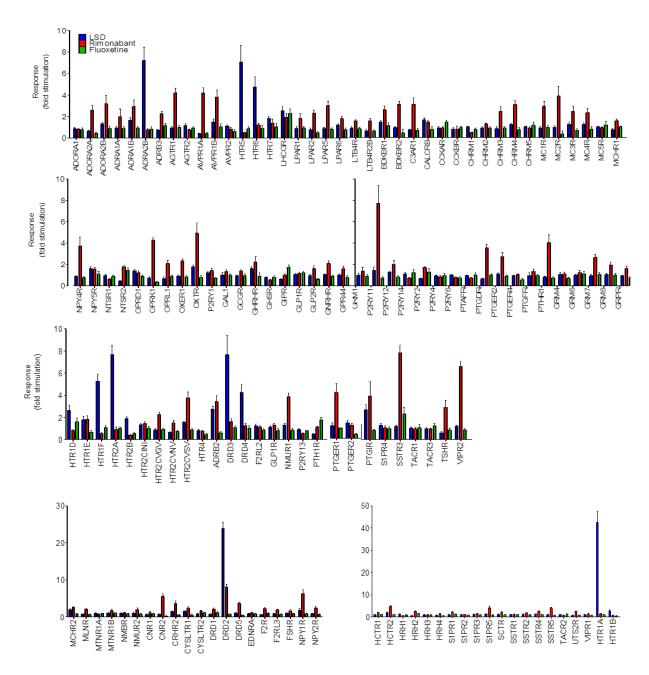
|   | 1    | 2      | 3                           | 4  | 5  | 6  | 7  | 8  | 9  | 19 | 11 | 12 |
|---|------|--------|-----------------------------|----|----|----|----|----|----|----|----|----|
| А |      |        | 1                           | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| В |      |        | 11                          | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| С |      |        | 21                          | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| D |      |        | 31                          | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| Е |      |        | 41                          | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| F |      |        | 51                          | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| G |      |        | 61                          | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| Н |      |        | 71                          | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
|   | DRD2 | Buffer | Tango constructs (#1 - #80) |    |    |    |    |    |    |    |    |    |


**Figure 50**. 96-well DNA map. Green wells (Column 1) have DRD2 plasmid as assay control. White wells (Column 2) have no DNA as negative controls. Grey wells (Columns 3 – 12) have DNA plasmids (DNA sample #1 to #80). A total of 4 96-well plates would be needed for a complete GPCRome Tango experiment.

|          | 1  | 2   | 3    | 4     | 5  | 6                | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|----------|----|-----|------|-------|----|------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Α        | _  | _   |      |       | 1  | 1                | 2  | 2  | 3  | 3  | 4  | 4  | 5  | 5  | 6  | 6  | 7  | 7  | 8  | 8  | 9  | 9  | 10 | 10 |
| В        |    |     |      |       | 1  | 1                | 2  | 2  | 3  | 3  | 4  | 4  | 5  | 5  | 6  | 6  | 7  | 7  | 8  | 8  | 9  | 9  | 10 | 10 |
| C        |    |     |      |       | 1  | 1                | 2  | 2  | 3  | 3  | 4  | 4  | 5  | 5  | 6  | 6  | 7  | 7  | 8  | 8  | 9  | 9  | 10 | 10 |
| D        |    |     |      |       | 1  | 1                | 2  | 2  | 3  | 3  | 4  | 4  | 5  | 5  | 6  | 6  | 7  | 7  | 8  | 8  | 9  | 9  | 10 | 10 |
| E        |    |     |      |       | 11 | 11               | 12 | 12 | 13 | 13 | 14 | 14 | 15 | 15 | 16 | 16 | 17 | 17 | 18 | 18 | 19 | 19 | 20 | 20 |
| F        |    |     |      |       | 11 | 11               | 12 | 12 | 13 | 13 | 14 | 14 | 15 | 15 | 16 | 16 | 17 | 17 | 18 | 18 | 19 | 19 | 20 | 20 |
| G        |    |     |      |       | 11 | 11               | 12 | 12 | 13 | 13 | 14 | 14 | 15 | 15 | 16 | 16 | 17 | 17 | 18 | 18 | 19 | 19 | 20 | 20 |
| Н        |    |     |      |       | 11 | 11               | 12 | 12 | 13 | 13 | 14 | 14 | 15 | 15 | 16 | 16 | 17 | 17 | 18 | 18 | 19 | 19 | 20 | 20 |
|          |    |     |      |       | 21 | 21               | 22 | 22 | 23 | 23 | 24 | 24 | 25 | 25 | 26 | 26 | 27 | 27 | 28 | 28 | 29 | 29 | 30 | 30 |
| <u> </u> |    |     |      |       | 21 | 21               | 22 | 22 | 23 | 23 | 24 | 24 | 25 | 25 | 26 | 26 | 27 | 27 | 28 | 28 | 29 | 29 | 30 | 30 |
| K        |    |     |      |       | 21 | 21               | 22 | 22 | 23 | 23 | 24 | 24 | 25 | 25 | 26 | 26 | 27 | 27 | 28 | 28 | 29 | 29 | 30 | 30 |
| L        |    |     |      |       | 21 | 21               | 22 | 22 | 23 | 23 | 24 | 24 | 25 | 25 | 26 | 26 | 27 | 27 | 28 | 28 | 29 | 29 | 30 | 30 |
| M        |    |     |      |       | 31 | 31               | 32 | 32 | 33 | 33 | 34 | 34 | 35 | 35 | 36 | 36 | 37 | 37 | 38 | 38 | 39 | 39 | 40 | 40 |
| N        |    |     |      |       | 31 | 31               | 32 | 32 | 33 | 33 | 34 | 34 | 35 | 35 | 36 | 36 | 37 | 37 | 38 | 38 | 39 | 39 | 40 | 40 |
| 0        |    |     |      |       | 31 | 31               | 32 | 32 | 33 | 33 | 34 | 34 | 35 | 35 | 36 | 36 | 37 | 37 | 38 | 38 | 39 | 39 | 40 | 40 |
| P        |    |     |      |       | 31 | 31               | 32 | 32 | 33 | 33 | 34 | 34 | 35 | 35 | 36 | 36 | 37 | 37 | 38 | 38 | 39 | 39 | 40 | 40 |
| '        | DR | .D2 | Nega | ative | 31 | Tango constructs |    |    |    |    |    |    | 40 |    |    |    |    |    |    |    |    |    |    |    |

Figure 51. 384-well DNA plate for calcium precipitation transfection. Tango constructs are transferred from 96-well plates into 384-well plates in the above layout. Green wells (Columns 1-2) are DRD2-transfected wells as assay control. White wells (Columns 3-4) have no DNA as negative controls (background). Grey wells (Columns 5-24) are for Tango constructs, each construct is transfected in 8 wells as highlighted in a block. In this setting, one 96-well DNA plate will need two 384-well plates, therefore, the entire GPCRome experiment requires a total of eight 384-well plates.




**Figure 52**. 384-well drug plate layout for stimulation. Column 1 receives 100 nM quinpirole, while Column 2 receives medium only (DMEM + 1% dFBS) to serve as "DRD2 basal". Columns 3 and 4 receive medium only to serve as background activity. For the rest of the plate, odd numbered columns receive medium (DMEM + 1% dFBS) and even numbered columns receive test sample (prepared in DMEM + 1% dFBS). Therefore, each Tango constructs has 4 sample wells and 4 basal wells. Results are expressed as fold of average basal for each construct.



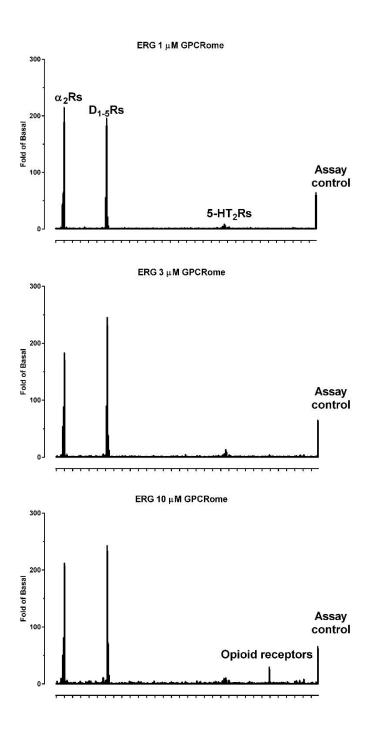
**Figure 53**. Navigator interface. This software readily calculates activation (%) relative to positive control as well as relative to baseline. Compound structures, number of plates and compounds tested per assay, and calculated values for every receptor/compound pair can be viewed on the main screen.

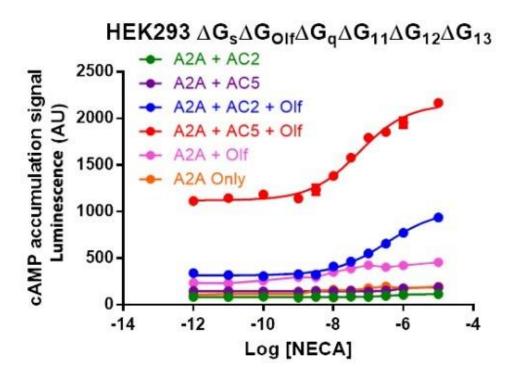
Alternatively, to calculate and report these values, we also use the Navigator software (custom made and developed in-house by the Molecular Modeling Laboratory, College of Pharmacy, UNC at Chapel Hill). The Navigator takes raw ouput files in Excel sheets and calculates relative activation as indicated above. A screen shot of the Navigator interface is shown in **Figure 53**.

**2.7.6. Representative figures**. As a proof of concept, we screened three compounds (LSD, Rimonabant, and Fluoxetine) against 143 GPCRs (non-orphan, non-olfacotry GPCRs) at final concentration of 1  $\mu$ M. Results (fold of baseline) are reported below in **Figure 54**. Representative GPCRome screening with ergotamine is shown in **Figure 55**.



**Figure 54**. Sample parallel primary screening for 143 non-orphan non-olfactory GPCRs using  $\beta$ -arrestin recruitment assay (Tango). Activity is reported as Response (fold stimulation over baseline) for LSD (blue), rimonabant (red), and fluoxetine (green).





Fig 55. GPCRome screening with ergotamine (ERG) at 1, 3, and 10  $\mu$ M. The assay control is 100 nM quinpirole at DRD2. Results were reformatted from a recent paper (172).

## 2.8. BRET-based transducerome assays

**2.8.1. Introduction:** G Protein Coupled Receptors (GPCRs) are membrane proteins that transduce extracellular signals to the intracellular environment through the activation of a heterotrimeric complex consisting of an  $\alpha$ -subunit ( $G_{\alpha}$ ) and a dimerized pair of  $\beta$  and  $\gamma$  subunits ( $G_{\beta\gamma}$ ). Upon receptor activation by an agonist, the receptor mediates an exchange of Guanosine Diphosphate (GDP) for a Guanosine Triphosphate (GTP) in the  $G_{\alpha}$  subunit, leading to dissociation from the receptor/ $G_{\alpha}/G_{\beta\nu}$ complex and subsequent activation of downstream effectors by these G proteins. Traditionally, GPCRs have been classified partially by the set of  $G_{\alpha}$  proteins activated by the receptors. These are grouped into families based on the similarity of their downstream effector pairings (Table 32). The degree to which one receptor may activate one or multiple species of G proteins is of considerable physiological importance, as different cellular contexts, containing different G protein complements, may produce markedly different responses following the activation of the same receptor. Because of the similarity of signaling pathways within G protein families, the ability to differentiate relative specific efficacies has been fraught with complications. Moreover, the different cell types used in functional assays can produce different responses, depending on whether the full complement of the effector pathway is intact. For example, the Adenosine 2<sub>A</sub> receptor (A<sub>2A</sub>) can couple effectively to Golf, but measuring its stimulation of cAMP production depends on the presence of adenylyl cyclase V (173), which is not present in all cell types (e.g. HEK293, Fig 56). Reconstitution of this complete effector pathway allows for a functional Golf readout, but requires a priori knowledge of these relevant details.

Table 32. G-protein alpha subunits and their primary effectors

| G-protein $\alpha$ subunits                                          | Primary effector pathways        |
|----------------------------------------------------------------------|----------------------------------|
| G <sub>q</sub> , G <sub>11</sub> , G <sub>14</sub> , G <sub>15</sub> | Activation of PLC/Trio/P63RhoGEF |
| G <sub>i1</sub> , G <sub>i2</sub> , G <sub>i3</sub> , G <sub>z</sub> | Inhibition of Adenylyl Cyclases  |
| G <sub>s</sub> long, G <sub>s</sub> short, G <sub>olf</sub>          | Activation of Adenylyl Cyclases  |
| G <sub>12</sub> , G <sub>13</sub>                                    | Activation of Rho/Rac GTPases    |



**Figure 56**. Adenosine 2A ( $A_{2A}$ ) mediated  $G_s$ -cAMP production signaling in HEK293 cells lacking  $G_s$ ,  $G_q$ ,  $G_{12}$  family G-proteins (174) requires Adenylyl Cyclase 5 (AC5).  $G_s$ -cAMP production was measured using GloSensor cAMP method.

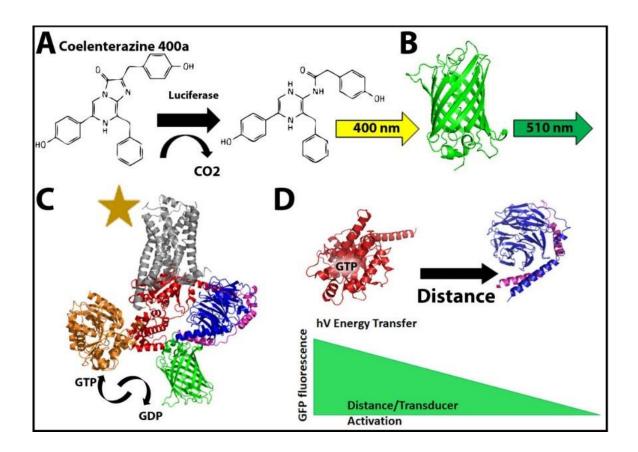
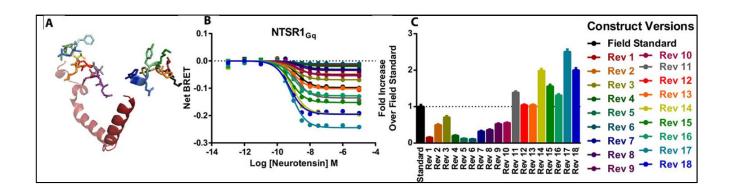
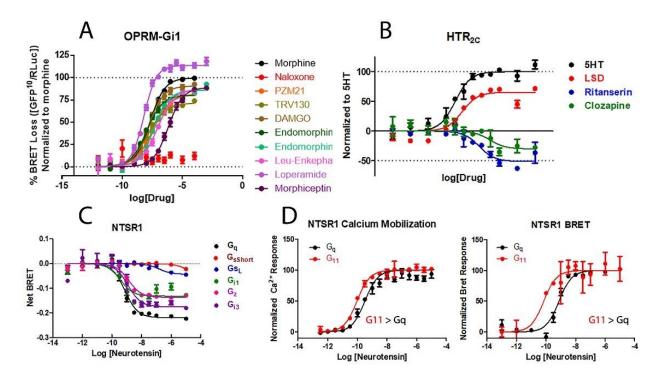





Fig 57. (A) Colenterazine 400a is oxidized to produce luminescence at 400 nm. (B) This wavelength excites the fluorophore GFP<sup>2</sup> which emits a fluorescent signal at 510 nm. (C) An active GPCR facilitates the exchange of GDP for GTP in its  $G_{\alpha}$  subunit, leading to the dissociation of the  $G_{\alpha\beta\gamma}$  and the subsequent activation of their effectors. (D) Labeling the heterotrimeric subunits with the luciferase and GFP<sup>2</sup> allows measuring the association of the inactive trimer, and the dissociation as a proxy for GPCR-mediated activation.



**Fig 58**. **(A)** rLuc was inserted at positions in the  $G_{\alpha}$  subunit (green) most proximal to the c-terminus of the  $G_{\gamma}$  subunit (burgundy), which is fused to GFP<sup>2</sup>. **(B)** Function and dynamic range of the BRET pairs were assayed using the human Neurotensin 1 receptor (NTSR1). **(C)** Dynamic range measured as the change in BRET following receptor activation was used to assess the optimal construct (greatest improvement over the current published standard).



**Fig 59**. **(A)** Relative potencies and efficacies for  $\mu$  opioid (MOR, OPRM1) receptor agonists through the  $G_{i1}$  pathway. **(B)** Full, partial, and inverse agonism at the HTR2C (5-HT<sub>2C</sub>) receptor. **(C)** Relative potencies through multiple G protein families at the neurotensin 1 receptor (NTS<sub>1</sub>). **(D)** Using G protein-deficient CRISP HEK293 cells, increased potency at the  $G_{11}$  pathway relative to its familial  $G_q$  counterpart can be confirmed.

Bioluminescence Resonance Energy Transfer (BRET) (175, 176) is an experimental tool used to study the association of two or more proteins. Briefly, an enzyme (Renilla luciferase) catalyzes a reaction with a chemical substrate (Fig 57A) to produce luminescence, which excites a proximal fluorophore when the emission/excitation of the substrate/fluorophore are resonant (Fig 57B). Thus, the ratio of the fluorescent signal to the (constant) luminescent output can be used as a proxy for the degree of association between the two proteins. In the case of GPCR signaling, this can be used to study the association of the  $G_{\alpha}$  and  $G_{\beta \nu}$  subunits, which make up the primary signaling complex downstream of receptor activation. An agonist-bound GPCR facilitates the exchange of Guanosine Diphosphate (GDP) for a Guanosine Triphosphate (GTP) in the  $G_{\alpha}$  subunit (Fig 57C), which stabilizes its active state and subsequent dissociation from the  $G_{B\nu}$  subunit. The  $G_{\alpha}$  is then free to activate its downstream effectors. By labeling the  $G_{\alpha}$  and the  $G_{\beta\gamma}$  with the luciferase and its cognate fluorophore (GFP<sup>2</sup>), the change in their resonance can be assessed as a measure of primary signal transduction of the GPCR (Fig 57D). We have developed a full panel of  $G_{\alpha}$ -luciferase fusion proteins and a cognate panel of GFP<sup>2</sup>-labeled and unlabeled  $G_{\mathbb{R}}$  and  $G_{\mathbb{V}}$  subunits. Although some versions of these constructs have been explored (177) in the literature, many of those exhibited relatively restricted dynamic ranges and thus, questionable utility. Recently, some groups have been attempting to rationally design similar biosensors, but no full panel of academic open-source freely available  $G_{\alpha}/G_{\beta\nu}$  tools exist yet.

**2.8.2. Assay design and optimization**. We utilized published crystal structures and modeling approaches to improve and optimize existing luciferase-tagged  $G_{\alpha}/G_{\beta\gamma}$  probes, and expanded the available library to the entire  $G_{\alpha}/G_{\beta\gamma}$  family. Throughout this process, we have generated and tested >400 unique constructs, selecting those showing the greatest dynamic range. These new biosensors exhibit between a 2 and 10-fold increase in dynamic range over the currently published probes, thus greatly enhancing the utility of this platform.

The optimized BRET probes can assay relative efficacies and potencies within transducer/receptor pairs (**Fig 58A**). Additionally, because the system is at equilibrium and is not subject to amplification, basal

activity and inverse agonism can also be measured (**Fig 58B**). Relative potencies among transducers can be assayed (**Fig 58C**), and can be confirmed using orthologous assays (**Fig 58D**).

## 2.8.3. Assay procedure

Day 1: HEK293T cells are plated at ~60% confluency in DMEM containing 10% dialyzed FBS (dFBS).

Day 2: Receptor +  $G_{\alpha}$ -RLuc +  $G_{\beta}$  +  $G_{\gamma}$ -GFP<sup>2</sup> plasmids are co-transfected at a ratio of 1:1:1:1.

Day 3: Cells are removed from the plate using versene (0.5 mM EDTA in PBS pH 7.4) and plated at a density of 25 to 50K cells/well in poly-lysine-coated 96-well plates in DMEM containing 1% dFBS.Day 4: DMEM is aspirated or shaken out of the wells, followed by a wash in assay buffer (1x HBSS + 20 mM HEPES pH 7.4). Subsequently, 60  $\mu$ l of assay buffer is added to the wells. 10  $\mu$ L of 50  $\mu$ M Coelenterazine 400a (Nanolight technology, Cat#340) is added to each well and incubated for 5 minutes while protected from light. 30  $\mu$ L of drug dilutions (done in assay buffer + 0.3 mg/ml ascorbic acid and 0.3% BSA) are added to the wells and incubated for an additional 5 minutes. At this point, the plate is read using a LB940 Mithras multimode microplate reader (Berthold Scientific) at 1 s per read, using 400 and 510 nm emission filters. BRET is computed as the ratio of GFP² fluorescence (GFP) to coelenterazine signal (rLuc). Signal is calculated as the net decrease in BRET following agonist addition (net BRET, **Fig 59C**) and can be normalized to a reference ligand (**Fig 59A, B, D**).

**2.8.4. Additional resources available:** In addition to the  $G_{\alpha}$ -rLuc probes, we have identified optimal  $\beta\gamma$  GFP-tagged acceptors. Throughout the process we have accumulated a complete set of tagged and untagged  $G_{\gamma}$  and  $G_{\beta}$  proteins that can be used to customize assays as requested (**Table 33**).

We plan to expand and validate this approach further, including GPCRs coupled to all four major  $G_{\alpha}$  protein families. Once validation is complete, we will make all relevant constructs available for non-commercial use through **AddGene**.

 Table 33.
 Complete list of tagged and untagged donor and acceptor constructs.

| Donor                                         | Optimal Acceptor                                    |
|-----------------------------------------------|-----------------------------------------------------|
| G <sub>i1</sub>                               | γ <sub>2</sub> -GFP                                 |
| G <sub>i2</sub>                               | γ <sub>2</sub> -GFP                                 |
| G <sub>i3</sub>                               | γ <sub>2</sub> -GFP                                 |
| Gz                                            | γ <sub>2</sub> -GFP                                 |
| G <sub>11</sub>                               | γ <sub>12</sub> -GFP                                |
| G <sub>12</sub> (optimization in progress)    | γ <sub>2</sub> -GFP                                 |
| G <sub>13</sub>                               | γ <sub>2</sub> -GFP                                 |
| G <sub>14</sub>                               | β <sub>4</sub> -GFP                                 |
| G <sub>15/16</sub> (optimization in progress) | $\beta_4$ -GFP                                      |
| Gq                                            | γ <sub>1</sub> -GFP                                 |
| G <sub>s Short</sub>                          | γ <sub>1</sub> -GFP                                 |
| G <sub>s Long</sub>                           | γ <sub>1</sub> -GFP                                 |
| Golf                                          | $\gamma_3$ -GFP, $\gamma_8$ -GFP, or $\beta_4$ -GFP |

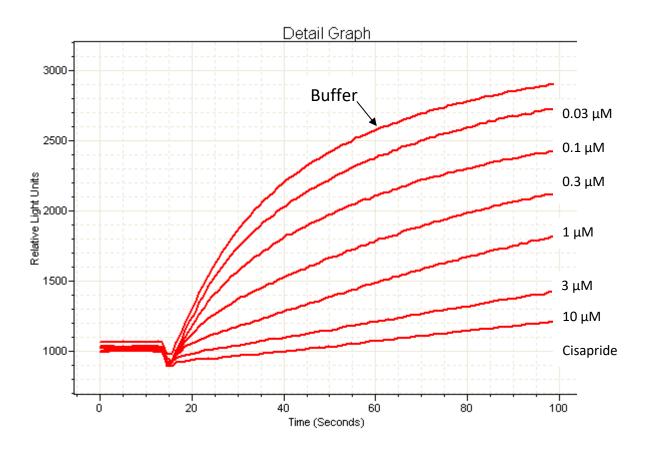
## 2.9. FluxOR assays for hERG activity

Main equipment: FLIPR<sup>TETRA</sup> from Molecular Devices (Sunnyvale, CA)

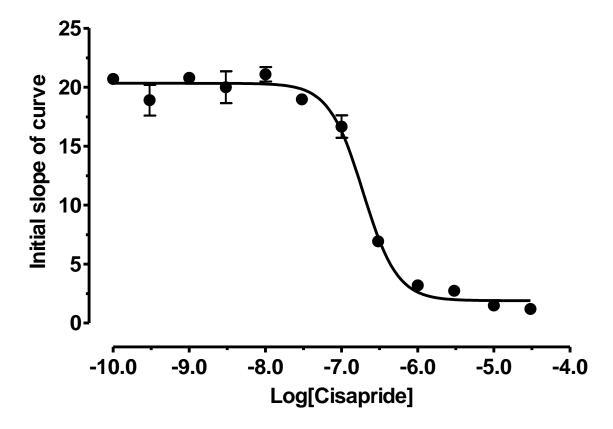
Main reagents: FluxOR kit from Invitrogen (Carlsbad, CA)

FluxOR assay buffer: 20 mM HEPES, 1x HEBSS, 2.5 mM Probenecid, pH 7.40

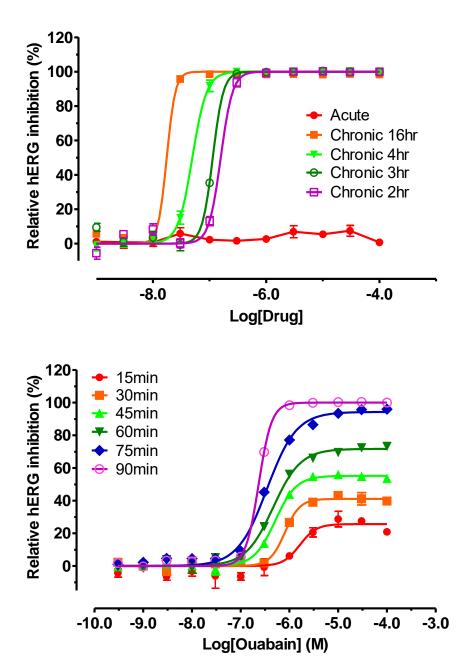
The following protocol was adapted from a previously published peper (131).


**2.9.1. Cell culture:** HEK293 cells stably expressing hERG channels were purchased from ChanTest (Cleveland, OH) and maintained accordingly in DMEM supplemented with 10% FBS and 500  $\mu$ g/ml G418. The hERG HEK293 cells are subcultured when they reach 80-90% confluency.

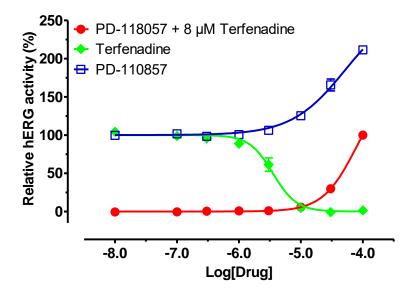
2.9.2. FluxOR assays for hERG inhibitors: Thallium (Tl+) Flux assays are carried out using the FluxOR Potassium Ion Channel Assay kit from Invitrogen according to the manufacturer's instructions with a few modifications. In detail, HERG HEK293 cells are plated into PLL-coated 384-well black clear bottom cell culture plates in DMEM supplemented with 1% dialyzed FBS at a density of 15,000 cells in a final volume of 40 µl per well. The plated cells are incubated overnight before being used for assay. On the day of the assay, FluxOR dye reagents are reconstituted by mixing Component A (1/1000) dilution) and PowerLoad (1/100 dilution) using FluxOR assay buffer and loaded into cells with 20 μl/well of FluxOR reagent for 90 min in the dark. During incubation, drug solutions and stimulation solution are prepared. Stimulation solution is as follows: 2.5ml deionized water, 1ml FluxOR chloridefree buffer (Component E), 1 ml K<sub>2</sub>SO<sub>4</sub> (125 mM, Component F), and 0.5 ml Tl<sub>2</sub>SO<sub>4</sub> (50 mM, Component G). At the end of the dye loading period, dye is removed, and the FLIPRTETRA is programmed to transfer drugs from drug plates into cell plates (25 µl per well). The cells are incubated with the drugs for 15 min at room temperature in the dark. Stimulation solution (6.3 μl per well) is added with the FLIPR<sup>TETRA</sup>. The fluorescence intensity (excitation at 490 nm and emission at 525 nm) in each well is measured every second for 10 seconds before addition of stimulation solution (as baseline), and for 90 seconds thereafter by the FLIPR<sup>TETRA</sup> using ScreenWorks 2.0 software. Alternatively, the FluxOR assays can be performed with cryopreserved hERG HEK293 cells. In brief, frozen cells are washed with growth media once to remove DMSO in the freezing media, and then


plated at 20,000 cells per well as above and assayed 5 hours later. Results using cryopreserved cells are not different from those obtained using fresh cells.

- **2.9.3. Assay procedure for hERG trafficking modulators:** The above protocol was designed to measure the acute effect of drugs on hERG channel activity (such as hERG channel inhibitors or activators). For those drugs without acute inhibitory effect in the TI<sup>+</sup> flux assays, we modified the standard protocol to conduct a longer chronic study to identify compounds that might be acting through indirect mechanisms (e.g., hERG trafficking inhibition, hERG internalization, and Na<sup>+</sup>-K<sup>+</sup> ATPase inhibition). Briefly, cells are first treated with drugs for the desired time period (up to 16 hours) and are washed once with assay buffer before dye loading. The dye solution is then replaced with assay buffer and the fluorescence intensity is measured upon addition of stimulation solution per the standard protocol.
- **2.9.4. Data processing and analysis:** The fluorescence intensity time course of each well in the 384-well assay plate is processed using ScreenWorks 2.0 software to export the slope of curve for the first 15 seconds after addition of the stimulation buffer. The initial slopes are then plotted against drug concentrations and analyzed in Prism 5.0 as outlined in **Section 2.3**.


**Figure 60**. Raw fluorescence signal traces recorded on FLIPR with HEK293 cells stably expressing hERG channels. Recording started 10 seconds before addition of stimulation solution and continued for another 90 seconds. Cisapride was shown to reduce signals in a dose-dependent manner (error bars not shown for clarity).




**Figure 61**. Initial slope of curves from above Figure 30 was exported from FLIPR ScreenWorks, plotted again corresponding concentrations of cisapride, and fitted to a four-parameter logistic function using GraphPad Prism 5.0.




**Figure 62**. Acute and chronic effect of the hERG trafficking inhibitor ouabain on hERG channel activity. Activity of ouabain was determined with acute TI<sup>+</sup> flux assay (upper) and chronic TI<sup>+</sup> assay (lower). HEK293 cells stably expressing hERG channels were first incubated with ouabain for desired time at 37°C in the incubator; the remaining hERG activity was determined.



**Figure 63**. Activation of hERG channels in TI<sup>+</sup> flux assays. Terfenadine completely inhibited hERG channel activity, whereas PD-118057 (upper panel) and ciclopirox (lower panel) were able to activate the hERG channel. For assays done in the presence of terfenadine, terfenadine was added 5 min before PD-118057 or ciclopirox. For hERG activator activity, values were normalized to their corresponding basal activities in percentage: basal activity as 100% in the absence of terfenadine and basal activity as 0% in the presence of terfenadine.



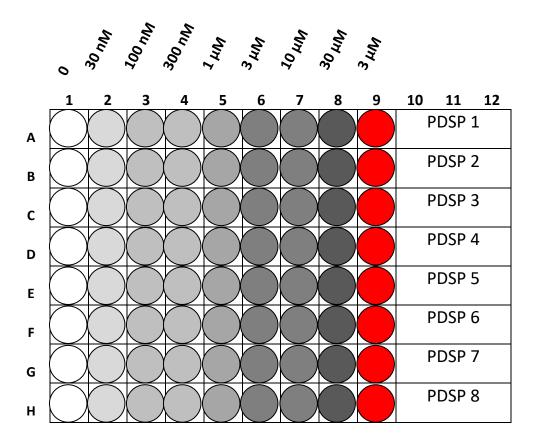


## 2.10. PatchXpress assays for hERG activity

Main equipment: PatchXpress 7000A (MDS Analytical Technologies, Sunnyvale, CA)

PatchXpress external solution: 137mM NaCl, 4mM KCl, 1.8mM CaCl<sub>2</sub>, 1mM MgCl<sub>2</sub>, 10mM HEPES, 10mM Glucose, pH7.4 (adjusted with NaOH).

PatchXpress internal buffer: 15mM NaCl, 70mM KF, 60mM KCl, 1mM MgCl<sub>2</sub>, 5mM HEPES, 5mM EGTA, 4mM ATP, and 0.4mM GTP, pH 7.2 (adjusted with KOH).


Automated planar patch clamp (APPC): PatchXpress electrophysiology

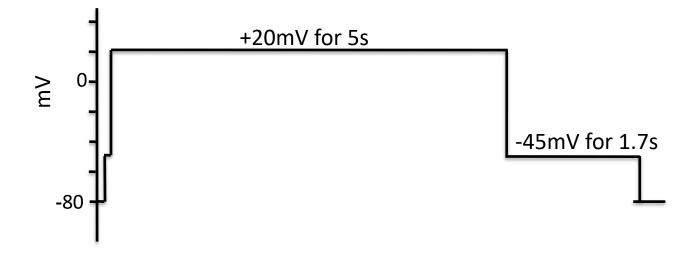
**2.10.1. External and Internal solutions:** The PatchXpress assay procedure is adopted from Huang et al., (2010) (131). Fresh external and internal solutions are prepared at room temperature on the day of the assay. The KF-based internal buffer was adopted from a report by Zeng et al., (2009) (178), in which they reported a greater success rate with a KF-based internal buffer than with a traditional KCl-internal solution. We add ATP, GTP, and  $Mg^{2+}$  to the KF-based internal solution to prevent potential current run-down. Osmolarity of the buffers is determined with a VAPRO 5520 Vapor Pressure Osmometer (Wescor, INC, Logan UT). The osmolarity is usually at 285 ± 10 mmol/Kg for the external buffer and 295 ± 10 mmol/Kg for the internal buffer. The buffers are vacuum-filtered to remove any air bubbles or small particles.

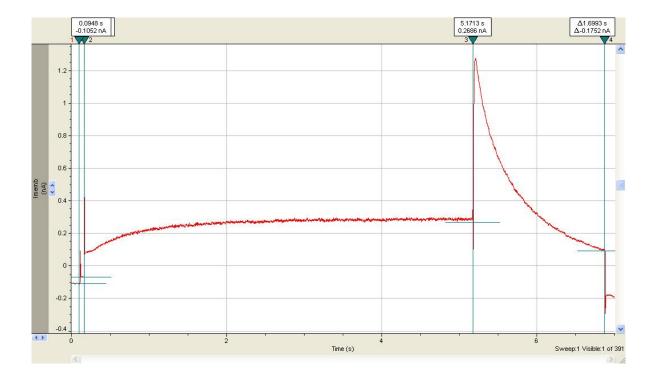
**2.10.2. Cell preparation:** For patch clamp assays, hERG HEK 293 cells are maintained as described above and subcultured into 10-cm dishes two days before scheduled assays at 1 – 2 million cells per dish in growth media without G418. Cells are not used if they reach more than 90% confluency. To prepare the cells for patch clamping, we followed ChanTest's recommendations with minor modifications. The goal is to prepare a clean, fresh cell suspension immediately before loading cells onto the PatchXpress. Cells are briefly washed with PBS, treated with Accutase (Sigma, 2.5ml per 10-cm dish) for 4 min at room temperature to detach them, gently transferred and suspended in 20 ml growth media without G418 in a 50-ml centrifuge tube, and allowed to recover from detachment for 30 min at 37°C in an incubator. At the end of the incubation period, 1 million cells are transferred into another 50ml centrifuge tube and pelleted by centrifugation at 250 x g for 2.5 min at room

temperature. The cell pellet is then gently re-suspended into 170  $\mu$ l of the external buffer, transferred into a 1.5ml mcirocentrifuge tube, and loaded into the PatchXpress 7000A (MDS Analytical Technologies, Sunnyvale, CA) in 'waiting mode' for cells. To minimize delay and cell clumping, the APPC system is started well in advance of use and primed with fresh external and internal solutions before preparing cells. The patch clamping procedure is started with a new SealChip right at the end of the 30-min incubation and recovery period. By the time the cell suspension is ready to load into the APPC system, the system has reached the 'waiting mode' for receiving the cells.

**2.10.3. Drug plate preparation:** While cells are in the incubation and recovery period, drug solutions are prepared in 0.5ml polypropylene round-bottom 96-well drug plate (Fisher Scientific). Drugs in 10 mM DMSO stocks were diluted in the external buffer at a final volume of 360  $\mu$ l per well, more than enough for the drug to be tested in two cells (triple addition at each of 50  $\mu$ l for one cell at each concentration). The final concentration of DMSO is 0.3% (v/v) for all dilutions (except for several drugs that required 3% DMSO as indicated in Results). For initial assays, 8-point (ranging from 30 nM to 30  $\mu$ M with 0.3% DMSO in external buffer as a negative control) concentration-response curves are generated. For subsequent assays, the concentration range can be adjusted as necessary to give full concentration-response curves (0 to 100% inhibition). The drug plate setup information is manually entered into the APPC system before starting the procedure. The assay is started within 15 minutes, and the highest drug concentration is tested within 90 minutes. A new drug plate is prepared for each new SealChip.




**Figure 64**. A typical APPC drug plate map (minimum of 360  $\mu$ l per well). Each drug has eight serial dilutions 0.5 log unit apart as indicated in the plate map, starting with a buffer control on the left and ending at 30  $\mu$ M, followed by a positive control (red) on the right, usually cisapride at 3  $\mu$ M.


**2.10.4. APPC procedures:** The APPC procedure starts with the manual loading of a SealChip<sub>16</sub><sup>TM</sup> (AVIVA Biosciences, San Diego, CA) and is executed automatically at room temperature. The system requires approximately 7 min to (1) dry and load the SealChip onto the recording station; (2) external and internal solutions are then added; (3) the quality of each of the 16 chambers is confirmed; (4) the machine enters waiting mode and prompts for cell loading, at which point the cell suspension prepared above is immediately loaded. After loading, the single cell suspension is triturated briefly and aliquoted (35  $\mu$ l, ~ 20,000 cells) by the on-board robotic Cavro pipette to each chamber on the SealChip. First, positive pressure (6 mmHg) then brief suction with negative pressure (-45 mmHg) are

applied to help the cells descend quickly, and a single cell is drawn onto the top of the electrode hole of each chamber. A negative pressure ramp to 75mmHg (at 5mmHg per second) is then applied repeatedly until the seal resistance reaches  $1G\Omega$  (Gigaohm) or greater for Giga-seals and over 300  $M\Omega$  (Megaohm) for 2<sup>nd</sup> seals. After obtaining a seal, another negative pressure ramp from -40mmHg to -250mmHg is applied repeatedly to rupture the patched membrane and achieve the whole cell configuration. Chambers with low seal resistances (i.e. no cell detection) are terminated within 90 seconds; chambers that cannot form seals within 5 minutes are terminated by either a built-in script or user intervention. After achieving whole cell configuration, the voltage protocol is activated, beginning with a 2-minute wash-out and a 5-minute stabilization period. After stabilization, cells with less than 0.2 nA tail current amplitude are terminated. The voltage protocol consists of the following steps: (1) depolarization from holding potential of -80mV to -50mV for 50 milliseconds to measure leak current without activation of the hERG channel; (2) further depolarization to +20mV for 5 seconds to activate the hERG channel (hERG channels are activated and quickly inactivated); (3) repolarization to -50mV for 1.7 seconds to remove inactivation and elicit outward hERG tail current; (4) repolarization to holding potential at -80mV to keep hERG channels closed. This pulse pattern is applied repeatedly every 10 seconds (0.1 Hz). The instantaneous current at -50mV before stepping to +20mV is designated as leak current and is subtracted from corresponding peak tail current for data processing. Each concentration-response study starts with a buffer control to determine the maximal hERG tail current (0% inhibition) in the absence of drugs. Each dose is applied three times (50 ul each at 25µl per second) with 11 seconds between additions, and each addition is preceded by aspiration of buffer or previous drug solution from the chamber down to a 5 µl dead volume. This triple addition and aspiration protocol fully exchanges the solution in the chamber with negligible dilution within one minute. The built-in DataStable script is activated between each dose. When either drug effect reaches steady state (less than 0.1% difference from last measurement), or after a maximum of 5 minutes, the next dose is queued for delivery. Right after each concentration-response trial, a 5minute wash-out is applied to monitor recovery of the hERG channels from inhibition. At the end of wash-out, a positive control (usually cisapride at 3 μM) is applied to inhibit any recovered hERG channel activity or remaining hERG channel activity.

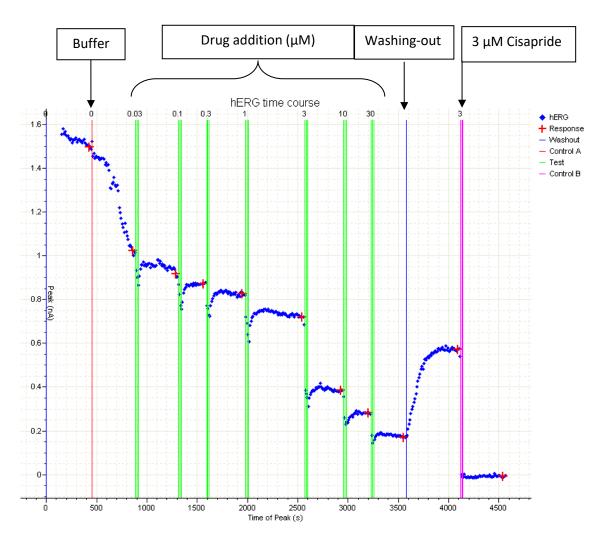
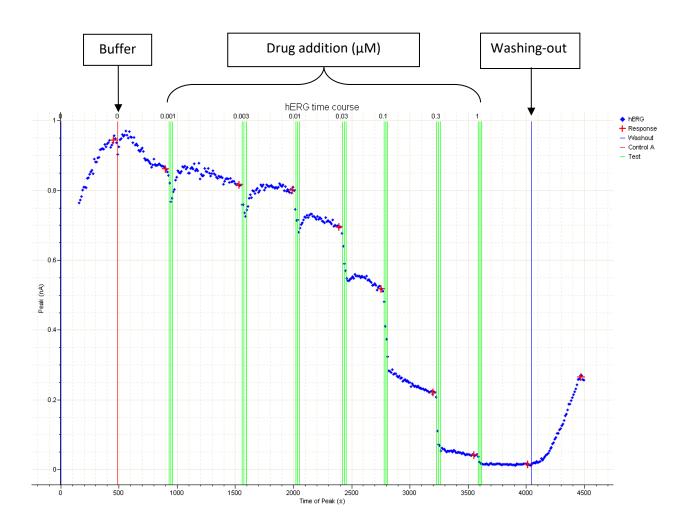
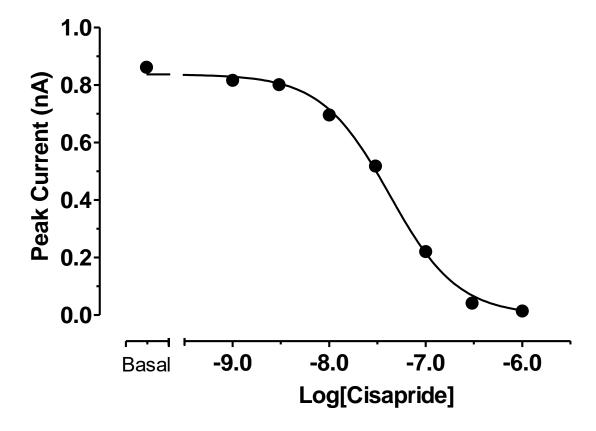
**2.10.5. Data processing and analysis:** APPC data are collected and automatically deposited into the database program DataXpress V2.0 (MDS Analytic Technologies, Sunnyvale, CA). If a cell has a leak current higher than 1/3 of the total tail current, the data for that cell is excluded. If a cell shows current run-down of more than 25% of the initial total tail current at the first (lowest) drug concentration, the data for that cell is excluded. The drug concentration range is usually adjusted after an initial assay so that, in subsequent assays, the lowest drug concentration inhibits hERG by less than 10%. The hERG tail currents are transformed and normalized to percent inhibition with a built-in script in the DataXpress program (total initial tail current = 0% inhibition, no current = 100% inhibition). Normalized results from multiple assays are pooled and analyzed with Prism's built-in four-parameter logistic functions as outlined in **Section 2.3**. A built-in statistical comparison function in Prism is then used to determine if a model with a variable Hill slope fit the data better than a model with a standard Hill slope (slope of 1); a p value less than 0.05 is considered significant. Finally, the potency value and corresponding Hill slope value from the best-fit model are reported.

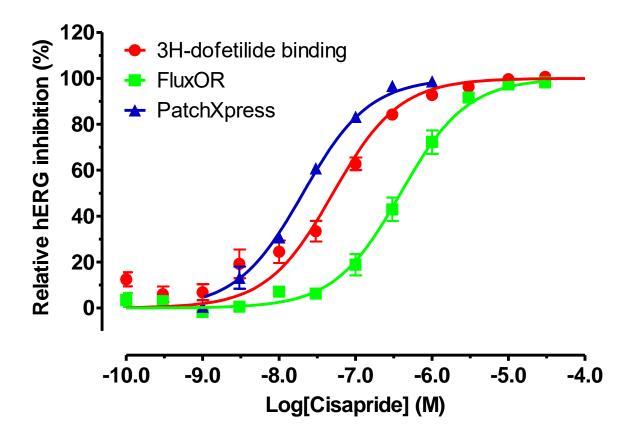
**Figure 65**. Voltage protocol (upper) and corresponding hERG tail current recording (lower) for the automated planar patch clamp assays.





**Figure 66**. A representative whole-cell patch clamp recording showing inhibition of hERG channel current (nA) by a PDSP compound in a dose-dependent manner, which was partially recovered during a wash-out cycle, and then completely inhibited again by a positive control (3  $\mu$ M cisapride). The figure is a captured screen in the DataXpress program showing hERG tail currents in the absence and presence of a PDSP compound. The red vertical line (left) indicates addition of buffer control, green vertical lines indicate triple additions of drugs with concentrations ( $\mu$ M) above the green lines, the dark blue vertical lines indicated wash-out with buffer, and the pink vertical lines indicate the positive control cisapride. Red crosses indicate the times when the hERG tail current was measured by the system.



Figure 67. The captured screen in the DataXpress program shows a representative whole-cell patch clamp recording of hERG tail currents in the absence and presence of cisapride. The red vertical line indicates addition of buffer control and the green vertical triple lines indicate triple additions of cisapride with concentrations ( $\mu$ M) listed above the green lines. Red crosses indicate the times when hERG tail current was measured by the system.



**Figure 68**. The hERG tail currents in Figure 67 were extracted from the program DataXpress, plotted against cisapride concentrations, and fitted to a four-parameter logistic function using GraphPad Prism 5.0 (131).



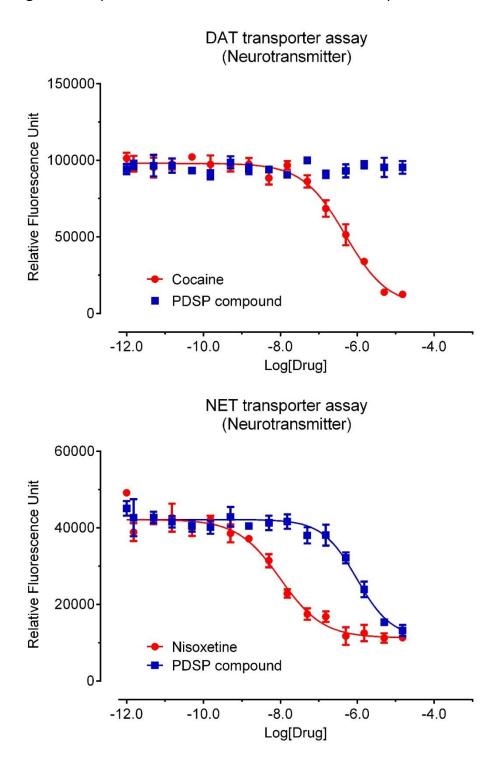
**Figure 69**. Side-by-side comparison of dose-dependent relations of cisapride in 3H-dofetilide competition binding assay; Tl<sup>+</sup> flux assay, and APPC assay. Results from multiple assays ( $n \ge 2$ ) were normalized to percentage inhibition and pooled for curve-fitting in GraphPad Prism 5.0. Results indicated that the PatchXpress assay was the most sensitive, and the Tl<sup>+</sup> flux assay was the least sensitive (131).

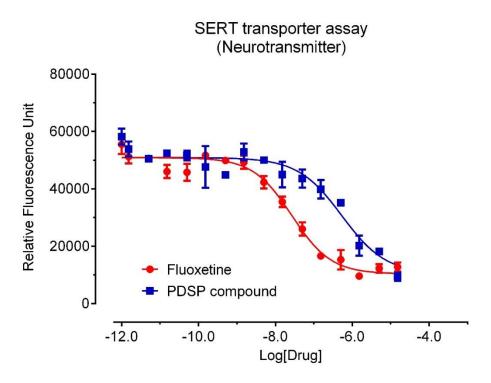


2.11. Neurotransmitter transporter assays for DAT (Dopamine transporter), NET (norepinephrine transporter), and SERT (Serotonin transporter).

Main equipment: FlexStation II (Molecular Devices, Sunnyvale, CA)

Main reagent: Neurotransmitter transporter uptake assay kit (R8174) from Molecular Devices


Assay buffer: 20 mM HEPES, 1x HBSS, pH 7.40, RT


**2.11.1. Background and principle**: The assay system is designed to use the same fluorophore to measure norepinephrine (NET), dopamine (DAT), and serotonin (SERT) transporter activity (179–184). The proprietary fluorophore mimics biogenic neurotransmitters and is actively transported into the cell through the NET, DAT, or SERT. After incubation with test compounds, the dye solution is added to cells and the fluorescent dye is transported into the cell. External fluorescence is quenched with a masking dye, which cannot enter cells. Therefore, fluorophore fluoresces when it enters the cell and the fluorescence intensity is proportional to the transporter activity. The assay can be performed without a wash step and the fluorescence intensity can be monitored in kinetic mode or end-point modes.

**2.11.2. Assay procedure:** The neurotransmitter transporter assays are conducted using Molecular Devices' Neurotransmitter Transporter Uptake Assay Kit (R8174) with HEK293 cells stably expressing human DAT, NET, or SERT. In brief, cells are plated in Poly-L-Lys (PLL)-coated 384-well black clear bottom cell culture plates in DMEM + 1% dialyzed FBS, at a density of 15,000 cells per well in a total volume of 40 ul. The cells are incubated for a minimum of 6 hours before use in assays. First, medium is removed, 20 μl of assay buffer (20 mM HEPES, 1x HBSS, pH 7.40) is added, followed by 5 μl of 5x drug solutions (384-well drug plate map #1 or #2, Figure 22, for primary assays and see 384-well drug map #4, Figure 25, in Section 2.1). Plates are incubated at 37°C for 30 min. After incubation, 25 μl of dye solution is added and fluorescence intensity is measured after 30 min at 37°C, using the FlexStation II (bottom read mode, Excitation at 440 nm, Emission at 520 nm with 510 nm cut-off). Results (Relative Fluorescence Units, RLU) are exported and plotted against drug concentrations in

| Prism 5.0 for nonlinear regression to obtain inhibitory potency. Cocaine, nisoxetine, and fluoxetine serve as positive controls for DAT, NET, and SERT, respectively.              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2.11.2. Data processing and analysis.</b> Fluorescence intensity is exported and analyzed in Prism 5.0 to obtain $IC_{50}$ values using non-linear least-squares curve fitting. |
| 2.11.3. Representative figures                                                                                                                                                     |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |

Figure 70. Representative curves of neurotransmitter reuptake inhibition at DAT, NET, and SERT.





### 2.12. Multidrug Resistance Transporter (MDR-1) assay.

Main equipment: FlexStation II (Molecular Devices, Sunnyvale, CA)

Assay buffer: Dulbecco's PBS, 10 mM Glucose

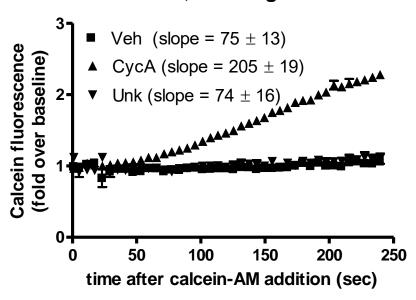
**Protocol**: The MDR assay protocol is adapted from PubChem BioAssay ID 377

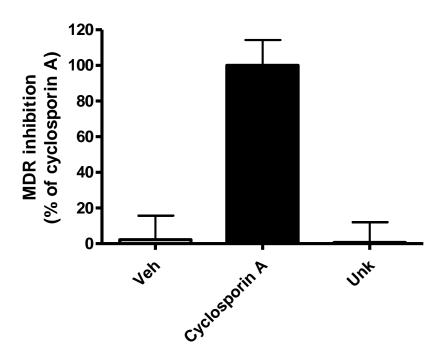
(http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=377)

2.12.1. MDR assay Background: Assays for modulation of MDR activity are performed using Caco-2 cells, a cultured line derived from human colonic epithelium. The assay relies on the fluorescent dye calcein an an indicator. Lipophilic pro-dye calcein acetoxymethyl ester (Calcein-AM) is not fluorescent, and easily gets across the plasma membrane, entering cells by passive diffusion. Calcein-AM is then converted by cellular esterases into highly fluorescent calcein, which is negatively charged and stays inside the cell. MDR can actively transport calcein-AM, but not fluorescent calcein, out of the cells; therefore intracellular fluorescent calcein would be low. Hihger MDR activity leads to lower fluorescence. Compounds that compete with calcein-AM for MDR will prevent the removal of calcein-AM from cells, leading to increased fluorescence. Therefore, fluorescence intensity can be used to estimate interaction between compounds and MDR (185–189).

**2.12.2. MDR** assay procedure: The assay monitors the time-dependent increase in calcein fluorescence in live cells in 96 well plates. This is carried out using a FlexStation II fluorimeter (Molecular Devices). Cells are seeded into glass-bottom 96-well plates one day before assay (80,000 cells per well). On the day of the assay, the medium is removed and replaced with 50  $\mu$ I of D-PBS, 10 mM glucose containing no additional compound (negative control), test compound (25  $\mu$ M), or reference compound (cyclosporin A) (25  $\mu$ M). The cells are incubated for 30 min at 37°C, and then the instrument adds calcein-AM to the cells (500 nM final concentration). The instrument monitors fluorescence over a 4-min period and calculates the slope of the fluorescence increase. All compounds are assayed in quadruplicate and each assay contains wells with no test compound (negative control) and wells with 25  $\mu$ M cyclosporin A, an efficient MDR inhibitor as a positive control. Results for test compounds are calculated from the slope of the fluorescence increase and are normalized so the value from untreated cells is 0% and the value for cyclosporin A is 100%.

This assay has several features that make it ideal for initial screening of compounds for interaction with MDR. Because the assay is carried out in live cells, compounds must diffuse across lipid bilayers to interact with MDR sites on the cytoplasmic face of the protein. This is similar to the situation in vivo, where compounds must diffuse into the cytoplasm where they interact with MDR. Similarly, the assay provides a means for assessing not only interactions with MDR but also partitioning across cell membranes and thus hydrophobicity.


Although this assay is excellent for initial screening, users should be aware that the assay has several drawbacks. i) The assay does not distinguish between MDR substrates and inhibitors. Both will give similar signals in the assay because they prevent the transport of calcein-AM. ii) Some compounds may give spurious results by inhibiting the esterases that convert calcein-AM to calcein. Finally, (iii) activity depends on the cytoplasmic concentration of the compounds. For a compound that is an MDR substrate, this concentration depends on the rate of diffusion across the plasma membrane and the rate at which MDR pumps the compound out of the cells. At steady state, the cytoplasmic concentration will be lower than the extracellular concentration, but it cannot be measured easily. Consequently, this assay is not the best choice for determining half-maximal concentrations for interacting compounds.


**2.12.3. Data process**. Fluorescence instensity is exported and analyzed in Prism 5.0 uising non-linear least-squares curve fitting.

### 2.12.4. Representative figures

Figure 71. Representative data from an MDR inhibition assay.

# MDR Transporter D-PBS, 10 mM glucose



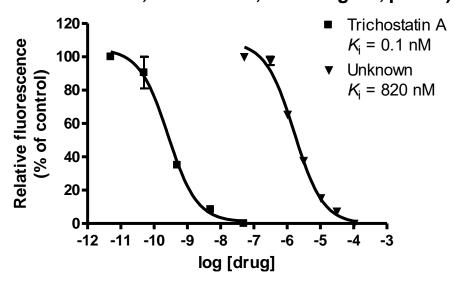


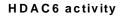
### 2.13. Histone Deacetylase (HDAC) inhibition assay.

Main equipment: FlexStation II (Fluorescence plate reader) (Molecular Devices, CA)

Assay buffer: 50 mM Tris HCl, 137 mm NaCl; 2.7 mM KCl, 1 mM MgCl<sub>2</sub>, pH 8.0

**Main reagent**: The HDAC assay protocol was adapted from BioMol Fluor de Lys assay system (Plymouth Meeting, PA)


**2.13.1. General Assay Procedure.** To identify potential inhibitors of HDAC, we utilize the fluorimetric Fluor de Lys HDAC Assay Kit from Biomol as instructed by the manufacturer. Similar procedures have been modified for high throughput screening assays (190–193). Briefly, 4X dilutions of test compound or reference compound (trichostatin A) are prepared (final assay concentrations span from 0.1 nM to 10 μM) in Assay Buffer, and 12.5 μl are added to the wells of a 96-well plate (particular to this assay; Biomol). Nuclear extracts containing HDAC activity (procured from Biomol) are diluted to 4X and 12.5 μl are added to the wells containing test or reference compound (each concentration assayed in triplicate). The samples are incubated at room temperature for 10 min to equilibrate the temperature. Then, 25 μl of 2X Fluor de Lys HDAC substrate (final HDAC substrate concentration is typically a value between one half its apparent  $K_{\rm M}$  and the apparent  $K_{\rm M}$ ; for HDAC1 a concentration of 50 μM is used, for HDAC6 a concentration between 10 and 30 μM is used) are added to each well. Deacetylation of the substrate, which generates a product that can be made fluorescent, is allowed to proceed for 30 min. Next, the reactions are stopped and the fluorescence of the deacetylated product is developed by adding 50 μl of 2X Assay Developer and incubating at room temperature for 15 min. Finally, fluorescence is read on a FLEXStation II plate reader (Molecular Devices) (excitation 350-380 nm, emission 440-460 nm).


**2.13.2. Data processing.** Raw data (RFUs) representing deacetylated substrate fluorescence is plotted as a function of the logarithm of the molar concentration of the test or reference compound. Nonlinear regression of the normalized (to the fluorescence measured in the absence of HDAC inhibitor and test compound) raw data is performed in Prism 5.0 using the built-in three parameter logistic model describing competitive inhibition (one-site):

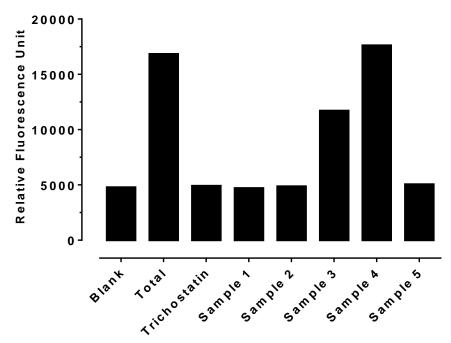



Figure 72. Representative HDAC 1 inhibition curves (upper) and HDAC 6 inhibition in the absence and presence of 10  $\mu$ M compounds (bar graph, lower)

# HDAC-1 Inhibition Assay HDAC Assay Buffer (50 mM Tris-HCI, 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, pH 8.0)



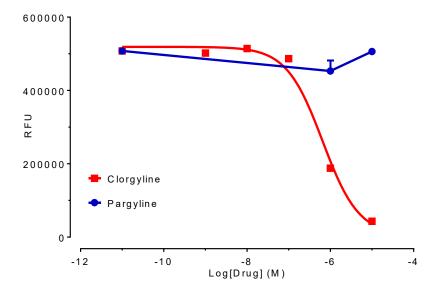


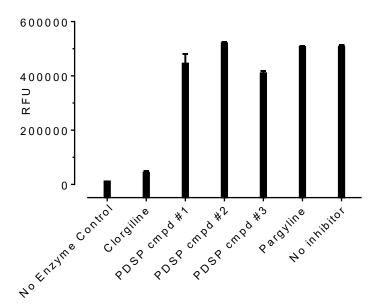


### 2.14. Monoamine Oxidase (MAO) A and B assays.

Main equipment: FlexStation II (Fluorescence plate reader) (Molecular Devices, CA)

Main reagent: Monoamine A and B Detection Kit from Cell Technology (Mountain View, CA)


**2.14.1. Background**. Monoamine oxidase (MAO) is a flavin-containg enzyme that catalyses the oxidation of amine-containing neurotransmitters such as serotonin, norepinephrine, epinephrine, and dopamine to yield the corresponding aldehydes. MAO has two isoforms, MAO A and MAO B. They exhibit different specificities to substrates and inhibitor selectivities. MAO A acts preferentially on serotonin and norepinephrine and is inhibited by clorgyline. MAO B acts preferentially on 2-phenylethylamine and benzylamine and is inhibited by deprenyl and pargyline. Several fluorescence-based screening assays have been developed over the years (194–198) to screen for inhibitors or to measure MAO activities.


We use the MAO A and B Detection Kit from Cell Technology for Monoamine A and B enzyme assays. The assay system utilizes a non-fluorescent proprietary substrate to detect  $H_2O_2$  released from the conversion of the MAO substrate (Benzylamine for MAO A and Tyramine for MAO B) to its aldehyde. The reaction of  $H_2O_2$  with the non-fluorescent substrate is catalyzed by peroxidase in 1:1 stoichiometry to produce a fluorescent product with emission at 590 – 600 nm and excitation at 530 – 571 nm.

- **2.14.2. Assay procedure**. The MAO A and B assays were performed in 96-well plates according to manufacturer's instructions. In brief, samples (test drugs and controls) are added to designated wells, followed by reaction cocktail containing reaction buffer, non-fluorescent substrate for H<sub>2</sub>O<sub>2</sub>, HRP, and substrate for MAO A or B. The reactions are allowed to proceed for 30 minutes at room temperature in the dark. At the end of the 30-minute incubation period, plates are read in the FlexStation II (Molecular Devices, CA) using excitation 570 nm and emission at 590 nm.
- **2.14.3. Data processing**. Fluorescence intensity is exported and analyzed in Prism v 5.0 uising non-linear least-squares curve fitting.

### 2.14.4. Representative figures

Figure 73. Representative curves for MAO A activity in the presence of clorgyline and pargyline (upper) and bar graph showing MAO A activity in the presence of 10  $\mu$ M different test compounds (lower).



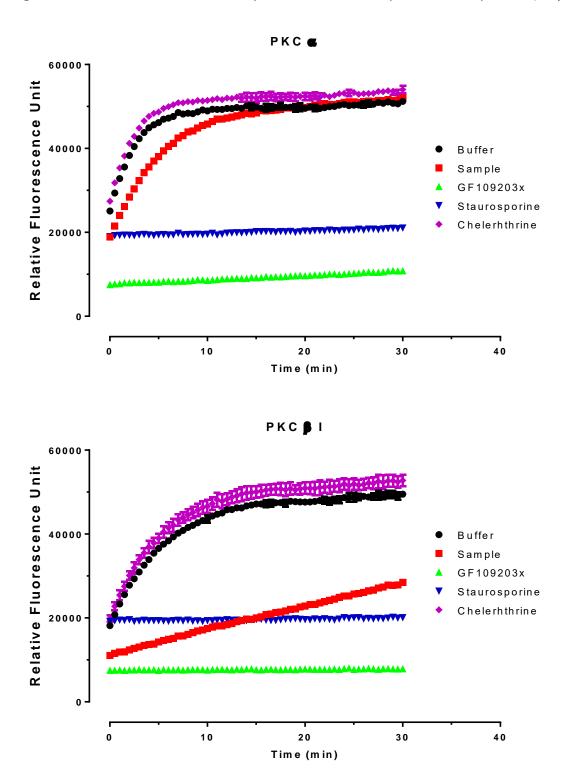


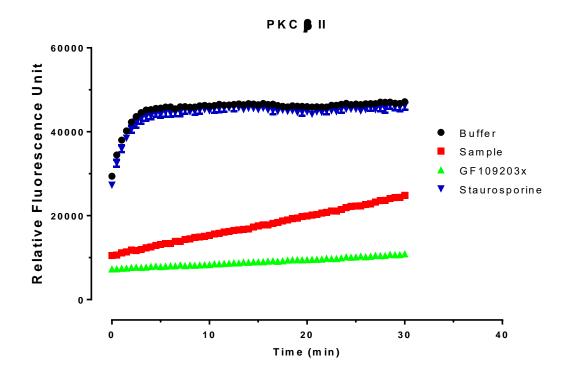
### 2.15. PKC activity assay

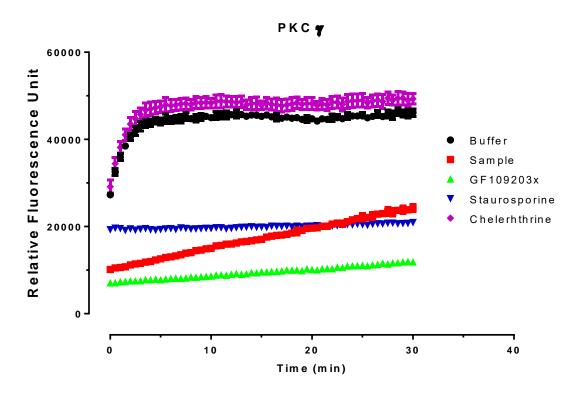
Main equipment: FlexStation II (Fluroescence plate reader) (Molecular Devices, CA)

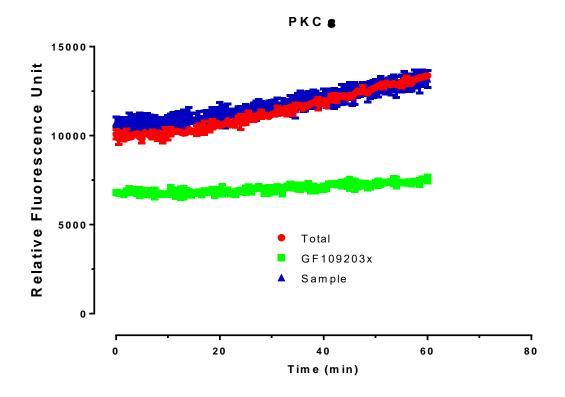
Main reagent: Omnia Ser/Thr Recombinant Kit 8 (#KNZ2081) from Invitrogen (Carlsbad, CA)

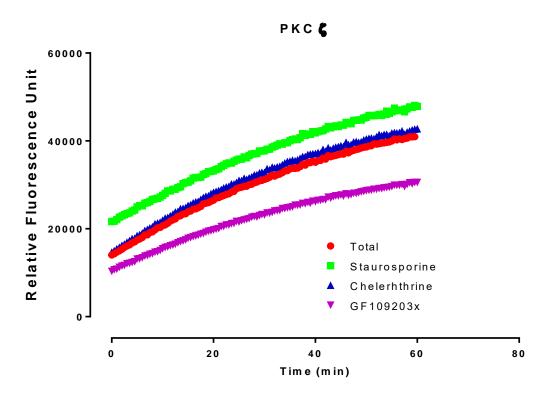
**PKC isoforms**: purchased from Invitrogen or Sigma (St. Louis, MO)

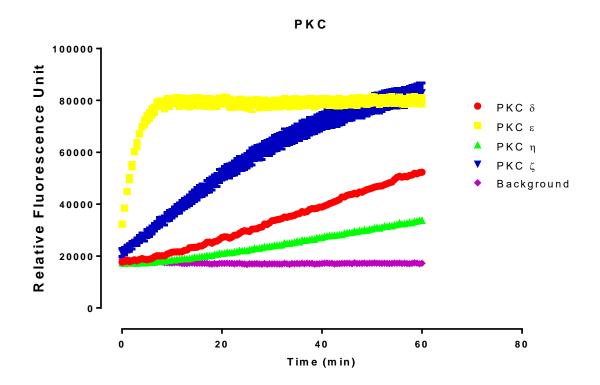

**2.15.1. Background**. Protein Kinase C (PKC) has 12 isoforms and is classed into three groups (conventional PKCs, Novel PKCs, and Atypical PKCs) based on their requirement of activators (Calcium ion lipids). Conventional PKC isoforms ( $\alpha$ ,  $\beta$ I,  $\beta$ II, and  $\gamma$ ) require calcium, DAG, and phospholipid as activators; novel PKC isoforms ( $\delta$ ,  $\epsilon$ ,  $\eta$ , $\theta$ , and  $\mu$ ) require DAG but not calcium; atypical PKC isoforms ( $\zeta$  and  $\iota$ ) require neither DAG nor calcium. We use Invitrogen's PKC assay kit (Kinase Activity Assay Kit, KNZ2081, aka The Omnia(R) Ser/Thr Recombinant Kit 8) for PKC inhibitor screening assays. The assay uses a Ser/Thr containing peptide substrate conjugated with the chelation-enhanced fluorophore (CHEF) 8-hydro-5-(N,N-dimethylsulfonamido)-2-methylquinoline (Sox). Phosphorylation of the peptide substrate results in Mg²+ chelation and formation of an ion-ion interaction bridge between the Sox moiety and phosphate group, leading to an increase in fluorescence at 485 nm when being excited at 360 nm.

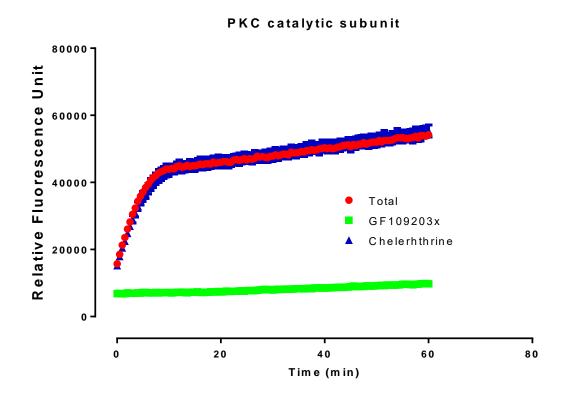

**2.15.2. Assay procedure.** PKC kinase activity assays are performed in 96-well plates (1/2 area and low protein binding surface) according to the manufacturer's suggested procedure. In brief, a master reaction mix is made with the following components: assay buffer, peptide substrate, ATP, DTT, calcium and/or lipid activator (use buffer for atypical PKC isoforms), and aliquotted to corresponding wells; this is followed by addition of drug working solutions (samples) or buffer (as negative control) or known inhibitors (as positive control). The mixture is warmed up in the FlexStation to 30°C for about 10 min. The reaction starts when PKC isoform is added, and plates are read every minute for 60 min, with excitation at 360 nm and emission at 485 nM.

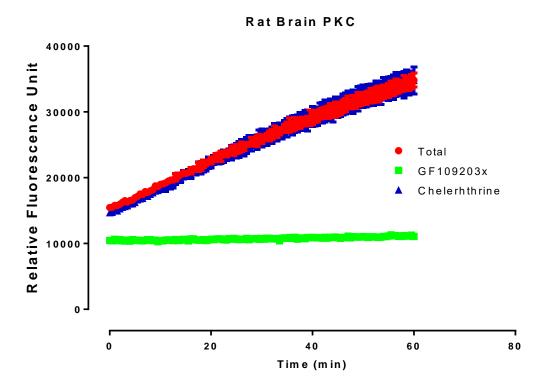

**2.15.3. Data analysis.** Fluorescence intensity increases over time. Intensity values are exported when the total activity reaches a plateau (or at the 30 min point) and analyzed in Prism v 5.0 using non-linear least-squares curve fitting.





Figure 74. Time course of PKC activity in the absence and presence compounds (10  $\mu$ M).











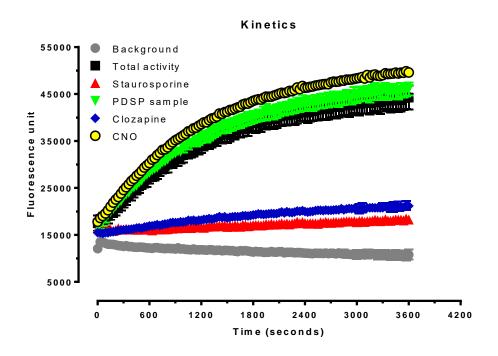


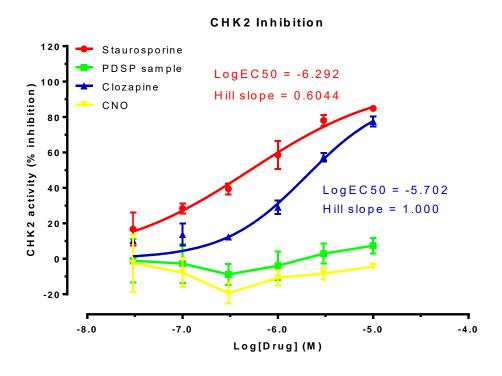

### 2.16. Checkpoint Kinase 2 (CHK2) assay

Main equipment: FlexStation II (Fluorescence plate reader) (Molecular Devices, Sunnyvale, CA)

Main reagent: Omnia Ser/Thr Recombinant Kit 3 (#KNZ1031) from Invitrogen (Carlsbad, CA)

CHK2 enzyme (#PV3367) was purchased from Invitrogen.


**2.16.1. Background.** CHK2 is one of the Ser/Thr kinases phosphorylated and activated by upstream signaling apparatus (ATM and ATR) in response to DNA damage. Along with CHK1, CHK2 plays a critical role in determining cellular responses to DNA damage. Inhibitors for kinases like CHK2 could represent novel anticancer therapies.


We use Invitrogen's Kinase Activity Assay Kit (#KNZ1031, Omnia Ser/Thr Recombinant Kit 3) to measure CHK2 activity (199–201). The Omnia® Kinase assay uses a Ser/Thr-containing peptide substrate conjugated with the chelation-enhanced fluorophore (CHEF) 8-hydro-5-(N,N-dimethylsulfonamido)-2-methylquinoline (Sox). Phosphorylation of the peptide sbustrate results in Mg<sup>2+</sup> chelation and formation of an ion-ion interaction between the Sox moiety and phosphate group, leading to an increase in fluorescence at 485 nm when being excited at 360 nm.

- **2.16.2. Assay procedure.** The PKC kinas activity assays are performed in 96-well plates (1/2 area and low protein binding surface) according to the manufacturer's suggested procedure. In brief, a master reaction mix is made with the following components: assay buffer, peptide substrate, ATP, DTT, calcium and/or lipid activator (use buffer for atypical PKC isoforms), and aliquotted to corresponding wells; drug working solutions (test samples) or buffer (as negative control) or known inhibitors (as positive control) are added, and the mixture is warmed up in the FlexStation to 30°C for about 10 min. The reaction starts when the PKC isoform is added, and plates are read every minute up to 60 min, with excitation of 360 nm and emission of 485 nM.
- **2.16.3. Data analysis.** Fluorescence intensity increases over time. Intensity values are exported when the total activity reaches a plateau (or at the 30 min point) and analyzed in Prism v 5.0 uising nonlinear least-squares curve fitting.

#### 2.16.4. Representative figures

**Figure 75**. Representative figures for CHK2 kinase activity kinetics (upper) and percentage inhibition (lower).

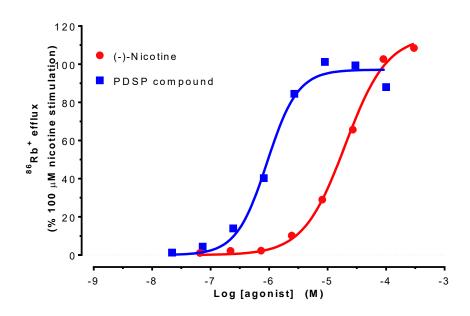




#### 2.17. Functional assays with human $\alpha 3\beta 4$ and $\alpha 4\beta 2$ nAChRs – $^{86}$ Rb<sup>+</sup> efflux assay

- **2.17.1. Background**. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, different from G protein-coupled muscarinic acetylcholine receptors (mAChRs). Each nAChR contains five subunits symmetrically forming a pore; each subunit has four transmembrane domains with both intracellular N- and C-terminus.
- **2.17.2. Assay procedure.** Agonist and antagonist activities of PDSP compounds on nAChRs are assessed by measuring <sup>86</sup>RB+ efflux in HEK293 cells stably expressing nAChRs as described previously (5, 6). In brief, aliquots of cells in the selection growth medium are plated into Poly-D-Lysine coated 24-well plates. The plated cells are grown at 37°C for 18 to 24 h to reach 70-95% confluence. The cells are then incubated in growth medium (0.5 ml/well) containing <sup>86</sup>RBCl (2 μCi/ml) for 4 h at 37°C. This loading mixture is then aspirated, and the cells are washed four times with HEPES buffer (15 mM HEPES, 140 mM NaCl, 2 mM KCl, 1 mM MgSO<sub>4</sub>, 1.8 mM CaCl<sub>2</sub>, 11 mM Glucose, pH 7.4; 1 ml/well). One ml of buffer, with or without agonists, is then added to each well. After incubation for 2 min, the assay buffer is collected and the amount of <sup>86</sup>Rb+ in the buffer is determined. Cells are lysed by adding 1 ml of 100 mM NaOH to each well, and the lysate is then collected for determination of the amount of <sup>86</sup>Rb+ in the cells at the end of the efflux assay. Radioactivity of assay samples and lysates is measured by liquid scintillation counting. The total amount of <sup>86</sup>Rb+ loaded (cpm) is calculated as the sum of the assay sample and the lysate of each well. The amount of <sup>86</sup>Rb+ efflux is expressed as a percentage of <sup>86</sup>Rb+ loaded. Stimulated <sup>86</sup>Rb+ efflux is defined as the difference between efflux in presence of nicotinic agonists and basal efflux measured in the absence of agonists.
- **2.17.2.1. Primary functional assay.** The primary functional assay is carried out with  $^{86}\text{Rb}^+$  efflux experiments. For assessing agonist activity, 4 concentrations of a test PDSP compound, 0.1, 1, 10 and 100  $\mu$ M, are applied. Agonist activity is scaled as % of the stimulation by 100  $\mu$ M nicotine. If a PDSP test compound shows a concentration-dependent activation, or shows 25% stimulation at any concentration, it is progressed to the secondary functional assay for agonist activity. For assessing antagonist activity, 4 concentrations of a test PDSP compound, 0.1 1, 10 and 100  $\mu$ M, are applied in the presence of 100  $\mu$ M nicotine. Antagonist activity is scaled as % inhibition of the  $^{86}\text{Rb}^+$  efflux

stimulated by 100  $\mu$ M nicotine. If a PDSP test compound shows a concentration-dependent inhibition, and shows more than 50% of inhibition at 100  $\mu$ M, it is progressed to the secondary functional assay for antagonist activity. All efflux assays are performed in quadruplicate. Nicotine is included in assays to define 100% agonist activity as well as to serve as a control.


2.17.2.2. Secondary functional assay. The secondary functional assay is carried out with  $^{86}$ Rb<sup>+</sup> efflux experiments. For assessing agonist activity, 8 concentrations of a test PDSP compound are applied. Agonist activity is scaled as % of stimulation by 100  $\mu$ M nicotine. For assessing antagonist activity, 8 concentrations of a test PDSP compound are applied in the presence of 100  $\mu$ M nicotine. Antagonist activity is scaled as % inhibition of the  $^{86}$ Rb<sup>+</sup> efflux stimulated by 100  $\mu$ M nicotine. All efflux assays are performed in quadruplicate. Nicotine is included in assays to define 100% agonist activity as well as to serve as a control.

**2.17.3.** Data analysis. Radioactivity (cpm/well) is exported and analyzed in Prism 5.0 by nonlinear least-squares regression to estimate  $EC_{50}$  or  $IC_{50}$  values.

#### 2.17.4. Representative figures

Figure 76. Representative figures of agonist activity at nAChRs





## nicotinic receptor Agonist Activity

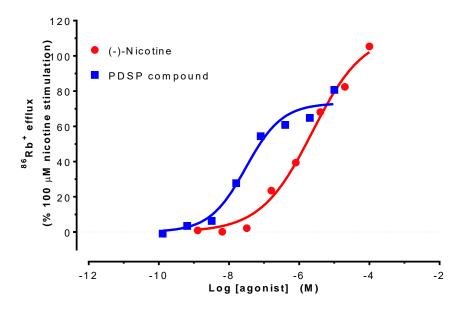
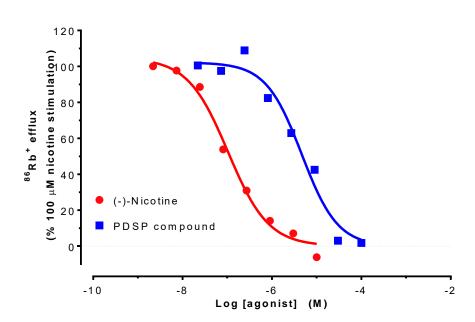
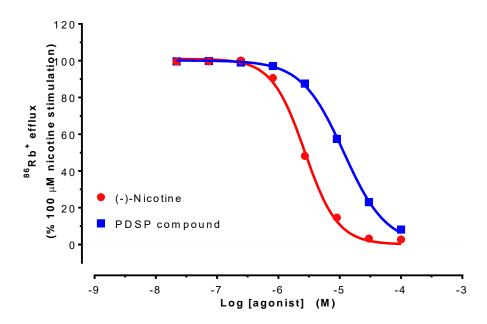





Figure 67. Representative figures of antagonist activity at nAChRs.





# **64β2** nicotinic receptor Antagonist Activity



**Table 34.** Complete list of targets and corresponding available functional and radioligand binding assays at PDSP.  $^3$ H or  $^{125}$ I is for available radioligand binding assays. A checkmark ( $^4$ ) indicates that the functional assay is available:  $G_q$  = Calcium mobilization or Inositol phosphate accumulation assay;  $G_i$  or  $G_s$  = split luciferase cAMP biosensor assay; β-arrestin = GPCR mediated arrestin translocation assay; "Other Assay" indicates target-specific assays as detailed in the main text as indicated in the specific section; "TBO" indicates assays under development or verification or optimization. Many assays can be developed upon request. BRET assays are being developed and will be made available for the PDSP when they are fully optimized.

| Target                   | А         | vailabl | rstem)                           | Note       |      |  |
|--------------------------|-----------|---------|----------------------------------|------------|------|--|
| (Receptor name)          | Binding   | Gq      | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin | BRET |  |
|                          |           |         |                                  |            |      |  |
| 5-HT <sub>1A</sub>       | 3H        |         | eceptors<br>V                    | ٧          |      |  |
| 5-HT <sub>1B</sub>       | 3H        |         | ٧                                | ٧          |      |  |
| 5-HT <sub>1D</sub>       | 3H        |         | ٧                                | ٧          |      |  |
| 5-HT <sub>1E</sub>       | 3H        |         | ٧                                | ٧          |      |  |
| 5-HT <sub>1F</sub>       |           |         | ٧                                | ٧          |      |  |
| 5-HT <sub>2A</sub>       | 3H        | ٧       |                                  | ٧          |      |  |
| 5-HT <sub>2B</sub>       | 3H        | ٧       |                                  | ٧          |      |  |
| 5-HT <sub>2C</sub> (INI) | 3H        | ٧       |                                  | ٧          |      |  |
| 5-HT <sub>2C</sub> (VGI) | 3H        | ٧       |                                  | ٧          |      |  |
| 5-HT <sub>2C</sub> (VGV) | 3H        | ٧       |                                  | ٧          |      |  |
| 5-HT <sub>2C</sub> (VNV) | 3H        | ٧       |                                  | ٧          |      |  |
| 5-HT <sub>2C</sub> (VSV) | 3H        | ٧       |                                  | ٧          |      |  |
| 5-HT₃                    | 3H        |         |                                  |            |      |  |
| 5-HT₄                    | 3H        |         | ٧                                | ٧          |      |  |
| 5-HT <sub>5A</sub>       | 3H        |         | ٧                                | ٧          |      |  |
| 5-HT <sub>6</sub>        | 3H        |         | ٧                                | ٧          |      |  |
| 5-HT <sub>7A</sub>       | 3H        |         | ٧                                | ٧          |      |  |
| 5-HT <sub>7B</sub>       |           |         |                                  |            |      |  |
| 5-HT <sub>7D</sub>       |           |         |                                  |            |      |  |
|                          | Acetylcho | line (M | uscarinic) re                    | ceptors    |      |  |
| $M_1$                    | 3H        | ٧       |                                  | ٧          |      |  |
| $M_2$                    | 3H        |         | ٧                                | ٧          |      |  |
| M <sub>3</sub>           | 3H        | ٧       |                                  | ٧          |      |  |
| $M_4$                    | 3H        |         | ٧                                | ٧          |      |  |

<sup>\*</sup>DREADD = Designer Receptors Exclusively Activated by Designer Drugs.

| Target                 | A       | vailabl  | e assays at                      | PDSP (new sy | rstem) | Note         |
|------------------------|---------|----------|----------------------------------|--------------|--------|--------------|
| (Receptor name)        | Binding | Gq       | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin   | BRET   |              |
| $M_5$                  | 3H      | √        |                                  | ٧            |        |              |
| •                      |         |          |                                  |              |        |              |
| M <sub>1</sub> DREADD* | 3H      | ٧        | •                                |              |        | DREADD       |
| M <sub>2</sub> DREADD  | 3H      |          | ٧                                |              |        | DREADD       |
| M <sub>3</sub> DREADD  | 3H      | ٧        |                                  | ٧            |        | DREADD       |
| M <sub>4</sub> DREADD  | 3H      |          | ٧                                | ٧            |        | DREADD       |
| M <sub>5</sub> DREADD  | 3H      | ٧        |                                  |              |        | DREADD       |
| GsDREADD               | 3H      | ٧        | ٧                                |              |        | DREADD       |
|                        | Ał      | nesion ( | lass GPCRs                       |              |        |              |
| ADGRA1                 |         |          |                                  |              |        | GPR123       |
| ADGRA2                 |         |          |                                  |              |        | GPR124       |
| ADGRA3                 |         |          |                                  |              |        | GRP125       |
| ADGRB1                 |         |          |                                  |              |        | BAI1         |
| ADGRB2                 |         |          |                                  |              |        | BAI2         |
| ADGRB3                 |         |          |                                  |              |        | BAI3         |
| CELSR1                 |         |          |                                  |              |        | ADGRC1       |
| CELSR2                 |         |          |                                  |              |        | ADGRC2       |
| CELSR3                 |         |          |                                  |              |        | ADGRC3       |
| ADGRD1                 |         |          |                                  |              |        | GPR133       |
| ADGRD2                 |         |          |                                  |              |        | GPR144       |
| ADGRE1                 |         |          |                                  |              |        | EMR1         |
| ADGRE2                 |         |          |                                  |              |        | EMR2         |
| ADGRE3                 |         |          |                                  |              |        | EMR3         |
| ADGRE4P                |         |          |                                  |              |        | EMR4, GPR127 |
| ADGRE5                 |         |          |                                  |              |        | CD97         |
| ADGRF1                 |         |          |                                  |              |        | GPR110       |
| ADGRF2                 |         |          |                                  |              |        | GPR111       |
| ADGRF3                 |         |          |                                  |              |        | GPR113       |
| ADGRF4                 |         |          |                                  |              |        | GPR115       |
| ADGRF5                 |         |          |                                  |              |        | GPR116       |
| ADGRG1                 |         |          |                                  |              |        | GPR56        |
| ADGRG2                 |         |          |                                  |              |        | GPR64        |
| ADGRG3                 |         |          |                                  |              |        | GPR97        |
| ADGRG4                 |         |          |                                  |              |        | GPR112       |
| ADGRG5                 |         |          |                                  |              |        | GPR114       |
| ADGRG6                 |         |          |                                  |              |        | GPR126       |
| ADGRG7                 |         |          |                                  |              |        | GPR128       |
| ADGRL1                 |         |          |                                  |              |        | LPHN1        |
| ADGRL2                 |         |          |                                  |              |        | LPHN2        |
| ADGRL3                 |         |          |                                  |              |        | LPHN3        |
| ADGRL4                 |         |          |                                  |              |        | ELTD1        |
| ADGRV1                 |         |          |                                  |              |        | GPR98        |
|                        | Ac      | Irenerg  | ic receptors                     | <u>'</u>     |        |              |

| Target                      | A       | vailabl   | e assays at                      | PDSP (new sy | /stem) | Note                |
|-----------------------------|---------|-----------|----------------------------------|--------------|--------|---------------------|
| (Receptor name)             | Binding | Gq        | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin   | BRET   |                     |
| α <sub>1A</sub>             | 3H      | ٧         |                                  | ٧            |        |                     |
| $\alpha_{\mathtt{1B}}$      | 3H      | ٧         |                                  | ٧            |        |                     |
| $lpha_{	exttt{1D}}$         | 3H      | ٧         |                                  | ٧            |        |                     |
| $\alpha_{\sf 2A}$           | 3H      |           | ٧                                | ٧            |        |                     |
| $\alpha_{2B}$               | 3H      |           | ٧                                | ٧            |        |                     |
| $lpha_{2C}$                 | 3H      |           | ٧                                | ٧            |        |                     |
| <b>ß</b> ₁                  | 1251    |           | ٧                                | ٧            |        |                     |
| ß <sub>2</sub>              | 3H      |           | ٧                                | ٧            |        |                     |
| ß <sub>3</sub>              | 125I    |           | ٧                                | ٧            |        |                     |
|                             | Ac      | lenosin   | e receptors                      |              |        |                     |
| A <sub>1</sub>              | 3H      |           | ٧                                | ٧            |        |                     |
| A <sub>2A</sub>             | 3H      |           | ٧                                | TBO          |        |                     |
| Mouse A <sub>2A</sub>       | 3H      |           | ٧                                |              |        |                     |
| A <sub>2B</sub>             | 3H      |           | ٧                                | TBO          |        |                     |
| A <sub>3</sub>              | 3H      |           |                                  | TBO          |        |                     |
|                             | Ang     | iotensi   | n II receptor                    |              | T      |                     |
| AT <sub>1</sub>             | 3H      | ٧         |                                  | ٧            |        |                     |
| AT <sub>2</sub>             | 3H      |           |                                  | TBO          |        |                     |
|                             | 1       | Apelin    | receptor                         | 1            | T      |                     |
| Apelin                      |         |           |                                  | ٧            |        |                     |
|                             | В       | ile Acio  | receptors                        | T            | T      |                     |
| GPBA                        |         |           |                                  | V            |        |                     |
|                             | Во      |           | n receptors                      |              | T      |                     |
| BB <sub>1</sub>             |         | ٧         |                                  | √            |        |                     |
| BB <sub>2</sub>             |         | ٧         |                                  | ٧            |        |                     |
| BB <sub>2</sub> , mouse     |         | ٧         |                                  |              |        |                     |
| BB <sub>3</sub>             |         | ٧         |                                  | V            |        |                     |
|                             | Br      | adykini   | n receptors                      | Г            | T      |                     |
| B <sub>1</sub>              |         |           |                                  | √            |        |                     |
| B <sub>2</sub>              |         | V         |                                  | V            |        |                     |
| <u>-</u>                    | Ca      | alcitoni  | n receptors                      | <b>TF</b> 0  | T      |                     |
| CT libra                    |         |           |                                  | TBO          |        | Calcitonin receptor |
| CT-like                     | Cala    |           | oin a na                         | TBO          |        | CT-like receptor    |
| CaC                         | Calci   | um sen    | sing recepto                     |              |        |                     |
| CaS                         |         |           |                                  | √            |        |                     |
| GPRC6                       |         |           |                                  | TBO          |        |                     |
|                             |         |           |                                  |              |        |                     |
| CB <sub>1</sub> (rat brain) | 3H      | IIIabiiiC | oid receptors                    | •            |        |                     |
| CB <sub>1</sub> (rat brain) | 3H      |           | ٧                                | ٧            |        |                     |
| CB <sub>1</sub>             | 3H      |           | V<br>V                           | V            |        |                     |
| GPR18                       | эп      |           | V                                | TBO          |        | Orphan              |
| GPR55                       |         |           |                                  | √            |        | Orphan              |
| ככאזט                       |         |           |                                  | V            |        | Orphian             |

| Target                | A           | vailabl | e assays at                      | PDSP (new sy | /stem) | Note                     |
|-----------------------|-------------|---------|----------------------------------|--------------|--------|--------------------------|
| (Receptor name)       | Binding     | $G_q$   | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin   | BRET   |                          |
| GPR119                |             |         |                                  | TBO          |        | Orphan                   |
|                       | Ch          | emokir  | e receptors                      |              |        |                          |
| CCR1                  |             |         |                                  | TBO          |        |                          |
| CCR2                  |             |         |                                  | TBO          |        |                          |
| CCR3                  |             |         |                                  | TBO          |        |                          |
| CCR4                  |             |         |                                  | ٧            |        |                          |
| CCR5                  |             |         |                                  | TBO          |        |                          |
| CCR6                  |             |         |                                  | ٧            |        |                          |
| CCR7                  |             |         |                                  | TBO          |        |                          |
| CCR8                  |             |         |                                  | TBO          |        |                          |
| CCR9                  |             |         |                                  | TBO          |        |                          |
| CCR10                 |             |         |                                  | TBO          |        |                          |
| CXCR1                 |             |         |                                  | ٧            |        |                          |
| CXCR2                 |             |         |                                  | ٧            |        |                          |
| CXCR3                 |             |         |                                  | TBO          |        |                          |
| CXCR4                 |             |         |                                  | ٧            |        |                          |
| CXCR5                 |             |         |                                  | TBO          |        |                          |
| CXCR6                 |             |         |                                  | ٧            |        |                          |
| ACKR3                 |             |         |                                  | ٧            |        | CXCR7, CMKOR1,<br>GPR159 |
| CX₃CR1                |             |         |                                  | ٧            |        |                          |
| XCR1                  |             |         |                                  |              |        |                          |
| CCRL1                 |             |         |                                  |              |        |                          |
| CCRL2                 |             |         |                                  |              |        |                          |
|                       |             |         |                                  |              |        |                          |
|                       | Chol        | ecystok | inin recepto                     | rs           |        |                          |
| CCK1                  |             | ٧       |                                  | ٧            |        |                          |
| CCK2                  |             | ٧       |                                  | TBO          |        |                          |
|                       | Comple      | ment p  | eptide recep                     | otors        |        |                          |
| C3a                   |             |         |                                  | ٧            |        |                          |
| C5a1                  |             |         |                                  | TBO          |        |                          |
| C5a2                  |             |         |                                  | TBO          |        |                          |
| Co                    | rticotropir | -relea  | sing factor                      | receptors    |        |                          |
| CRF <sub>1</sub>      | 3H          |         | ٧                                | ТВО          |        | CRHR1                    |
| CRF <sub>2</sub>      | 3H          |         | ٧                                | TBO          |        | CRHR2                    |
|                       |             |         |                                  |              |        |                          |
| D <sub>1</sub>        | 3H          |         | ٧                                | ٧            |        |                          |
| D <sub>2</sub>        | 3H          |         | ٧                                | ٧            |        |                          |
| D <sub>3</sub>        | 3H          |         | TBO                              | ٧            |        |                          |
| D <sub>4</sub>        | 3H          |         | ٧                                | ٧            |        |                          |
| <b>D</b> <sub>5</sub> | 3H          |         | ٧                                | ٧            |        |                          |
|                       |             |         |                                  |              |        |                          |
| ETA                   |             |         |                                  | ٧            |        |                          |

| Target           | A       | vailabl | e assays at                      | PDSP (new sy | vstem) | Note   |
|------------------|---------|---------|----------------------------------|--------------|--------|--------|
| (Receptor name)  | Binding | $G_q$   | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin   | BRET   |        |
| ET <sub>B</sub>  |         |         |                                  | TBO          |        |        |
|                  |         |         |                                  |              |        |        |
| GPER             |         |         |                                  | TBO          |        |        |
|                  |         |         |                                  |              |        |        |
| FPR1             |         |         |                                  | ٧            |        |        |
| FPR2/ALX         |         |         |                                  | ٧            |        |        |
| FPR3             |         |         |                                  | V            |        |        |
|                  | Free    | fatty a | cid receptor                     | ·s           |        |        |
| FFA1             |         | ٧       |                                  | ٧            |        |        |
| FFA2             |         |         |                                  | TBO          |        |        |
| FFA3             |         |         |                                  | TBO          |        |        |
| FFA4             |         |         |                                  | ٧            |        | GPR120 |
| GPR42            |         |         |                                  | TBO          |        | Orphan |
|                  | F       | rizzled | receptors                        |              |        |        |
| FZD1             |         |         |                                  |              |        |        |
| FZD2             |         |         |                                  |              |        |        |
| FZD3             |         |         |                                  |              |        |        |
| FZD4             |         |         |                                  |              |        |        |
| FZD5             |         |         |                                  |              |        |        |
| FZD6             |         |         |                                  |              |        |        |
| FZD7             |         |         |                                  |              |        |        |
| FZD8             |         |         |                                  |              |        |        |
| FZD9             |         |         |                                  |              |        |        |
| FZD10            |         |         |                                  |              |        |        |
| SMO              | 3H      |         |                                  |              |        |        |
|                  |         |         |                                  |              |        |        |
|                  | (       | GABAB   | receptors                        |              |        |        |
| GABAB1           |         |         |                                  |              |        |        |
| GABAB2           |         |         |                                  |              |        |        |
|                  | (       | Salanin | receptors                        |              |        |        |
| $GAL_1$          |         |         |                                  | ٧            |        |        |
| GAL <sub>2</sub> |         |         |                                  | ٧            |        |        |
| GAL <sub>3</sub> |         |         |                                  | ٧            |        |        |
|                  |         |         | receptor                         |              |        |        |
| Ghrelin          | 3H      | ٧       |                                  | ٧            |        |        |
|                  | G       | lucagor | receptors                        | 1            |        |        |
| GHRH             |         |         |                                  | ٧            |        |        |
| GIP              |         |         |                                  |              |        |        |
| GLP-1            |         |         | ٧                                | ٧            |        |        |
| GLP-2            |         |         |                                  | TBO          |        |        |
| Glucagon         |         |         |                                  | TBO          |        |        |
| Secretin         |         |         |                                  | ٧            |        |        |
|                  | Gly     | coprote | ein receptors                    | 5            |        |        |

| Target             | A          | vailabl  | e assays at                      | PDSP (new sy | rstem) | Note    |
|--------------------|------------|----------|----------------------------------|--------------|--------|---------|
| (Receptor name)    | Binding    | $G_q$    | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin   | BRET   |         |
| FSH                |            |          |                                  | TBO          |        |         |
| LH                 |            |          |                                  | TBO          |        |         |
| TSH                |            |          |                                  | TBO          |        |         |
| Gor                | nadotrophi | n-releas | sing hormon                      | e receptors  |        |         |
| GnRH₁              |            |          |                                  | ٧            |        |         |
| $GnRH_2$           |            |          |                                  | TBO          |        |         |
| _                  |            |          |                                  |              |        |         |
| H <sub>1</sub>     | 3H         | ٧        |                                  | ٧            |        |         |
| H <sub>2</sub>     | 3H, 125I   | ٧        | ٧                                | ٧            |        |         |
| H <sub>3</sub>     | 3H         |          | ٧                                | ٧            |        |         |
| H <sub>4</sub>     | 3H         |          |                                  | ٧            |        |         |
|                    | Hydroxy    | carboxy  | lic acid rece                    | ptors        |        |         |
| HCA <sub>1</sub>   |            |          |                                  | TBO          |        | GPR81   |
| HCA <sub>2</sub>   | 3H         |          | ٧                                | ٧            |        | GPR109A |
| HCA₃               |            |          |                                  | TBO          |        | GPR109B |
|                    | Ki         | isspepti | n receptor                       |              |        |         |
| Kisspeptin         |            |          |                                  | TBO          |        |         |
|                    | Lei        | ıkotrier | ne receptors                     |              |        |         |
| BLT <sub>1</sub>   |            |          |                                  | ٧            |        |         |
| BLT <sub>2</sub>   |            |          |                                  | TBO          |        |         |
| CysLT <sub>1</sub> |            |          |                                  | ٧            |        |         |
| CysLT <sub>2</sub> |            |          |                                  | TBO          |        |         |
| OXE                |            |          |                                  | TBO          |        |         |
| FRP2/ALX           |            |          |                                  | ٧            |        |         |
|                    | Lysopho    | spholid  | e (LAP) rece                     | ptors        |        |         |
| LPA <sub>1</sub>   |            |          |                                  | ٧            |        |         |
| LPA <sub>2</sub>   |            |          |                                  | ٧            |        |         |
| LPA <sub>3</sub>   |            |          |                                  | TBO          |        |         |
| LPA <sub>4</sub>   |            |          |                                  | TBO          |        |         |
| LPA <sub>5</sub>   |            |          |                                  | ٧            |        |         |
| LPA <sub>6</sub>   |            |          |                                  | TBO          |        |         |
|                    | Lysopho    | spholip  | id (S1P) rece                    |              |        |         |
| S1P <sub>1</sub>   | , ,        |          | ` '                              | √            |        |         |
| S1P <sub>2</sub>   |            |          |                                  | ٧            |        |         |
| S1P <sub>3</sub>   |            |          |                                  | ٧            |        |         |
| S1P <sub>4</sub>   |            |          |                                  | TBO          |        |         |
| S1P <sub>5</sub>   |            |          |                                  | TBO          |        |         |
| M                  |            |          |                                  |              |        |         |
| MCH <sub>1</sub>   |            |          |                                  | ٧            |        |         |
| MCH <sub>2</sub>   |            |          |                                  | ٧            |        |         |
|                    | Mel        | anocor   | tin receptor                     |              |        |         |
| MC <sub>1</sub>    |            | ٧        | ٧                                | ٧            |        |         |
| MC <sub>2</sub>    |            |          |                                  | TBO          |        |         |

| Target                | A           | vailabl  | vstem)                           | Note       |      |  |
|-----------------------|-------------|----------|----------------------------------|------------|------|--|
| (Receptor name)       | Binding     | $G_q$    | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin | BRET |  |
| MC <sub>3</sub>       |             | ٧        | ٧                                | TBO        |      |  |
| MC <sub>4</sub>       |             |          | ٧                                | ٧          |      |  |
| MC <sub>5</sub>       |             |          | ٧                                | ٧          |      |  |
|                       |             |          |                                  |            |      |  |
| MT <sub>1</sub>       |             |          | ٧                                | ٧          |      |  |
| MT <sub>2</sub>       |             |          | ٧                                | ٧          |      |  |
|                       |             |          |                                  |            |      |  |
| mGlu₁                 | 3H TBO      | ٧        |                                  | TBO        |      |  |
| mGlu <sub>2</sub>     | 3H          |          | ٧                                | TBO        |      |  |
| mGlu₃                 | 3H          |          | ٧                                | TBO        |      |  |
| mGlu₄                 | 3H TBO      |          | ٧                                | TBO        |      |  |
| mGlu₅                 | 3H          | ٧        |                                  | TBO        |      |  |
| mGlu₅                 | 3H          |          | ٧                                |            |      |  |
| (rat brain)           |             |          |                                  |            |      |  |
| mGlu <sub>6</sub>     | 3H          |          | ٧                                | TBO        |      |  |
| mGlu <sub>7</sub>     | 3H TBO      |          |                                  | TBO        |      |  |
| mGlu <sub>8</sub>     | 3H TBO      |          | ٧                                | TBO        |      |  |
|                       | 1           | Motilin  | receptor                         |            |      |  |
| Motilin               |             |          |                                  | ٧          |      |  |
|                       | Neu         | romedi   | n U receptoi                     |            |      |  |
| NMU1                  |             |          |                                  | ٧          |      |  |
| NMU2                  |             |          |                                  | ٧          |      |  |
|                       | Neur        | opeptid  | e FF recepto                     |            |      |  |
| NPFF1                 |             |          |                                  | TBO        |      |  |
| NPFF2                 |             |          |                                  | TBO        |      |  |
|                       | Neu         | ropepti  | de S recepto                     |            |      |  |
| NPS                   |             |          |                                  | ٧          |      |  |
|                       |             |          |                                  |            |      |  |
|                       |             |          |                                  |            |      |  |
|                       | europeptide | e W/Ne   | uropeptide                       |            |      |  |
| NPBW <sub>1</sub>     |             |          | ٧                                | ٧          |      |  |
| NPBW <sub>2</sub>     |             |          | ٧                                | ٧          |      |  |
|                       | Neur        | opeption | de Y recepto                     |            |      |  |
| Y <sub>1</sub>        |             |          |                                  | ٧          |      |  |
| Y <sub>2</sub>        |             |          |                                  | ٧          |      |  |
| Y <sub>4</sub>        |             |          |                                  | ٧          |      |  |
| <b>Y</b> <sub>5</sub> |             |          |                                  | TBO        |      |  |
| Y <sub>6</sub>        |             |          |                                  | TBO        |      |  |
|                       |             |          | in receptors                     |            |      |  |
| NTS1                  | 3H          | ٧        |                                  | ٧          |      |  |
| NTS2                  | 3H          |          |                                  | V          |      |  |
|                       |             | Opioid   | receptors                        | <u> </u>   |      |  |
| δ (DOR)               | 3H          |          | ٧                                | ٧          |      |  |

| Target            | А          | vailabl  | e assays at                      | PDSP (new sy | vstem) | Note            |
|-------------------|------------|----------|----------------------------------|--------------|--------|-----------------|
| (Receptor name)   | Binding    | $G_q$    | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin   | BRET   |                 |
| κ (KOR)           | 3H         |          | ٧                                | ٧            |        |                 |
| μ (MOR)           | 3H         |          | ٧                                | ٧            |        |                 |
| NOP               | 3H         |          | ٧                                | ٧            |        |                 |
| MRGPRX1           |            |          |                                  | ٧            |        | Orphan          |
| MRGPRX2           |            | ٧        |                                  | ٧            |        | Orphan          |
| MRGPRX3           |            |          |                                  | TBO          |        | Orphan          |
| MRGPRX4           |            | ٧        |                                  | ٧            |        | Orphan          |
|                   |            | Orexin   | receptors                        |              |        |                 |
| OX <sub>1</sub>   |            |          |                                  | ٧            |        |                 |
| OX <sub>2</sub>   |            |          |                                  | ٧            |        |                 |
|                   |            | Oxogl    | lutarate                         |              |        |                 |
| Oxoglutarate      |            |          | ٧                                | TBO          |        |                 |
|                   |            | P2Y re   | eceptors                         |              |        |                 |
| P2Y <sub>1</sub>  |            | ٧        |                                  | ٧            |        |                 |
| P2Y <sub>2</sub>  |            | ٧        |                                  | ٧            |        |                 |
| P2Y <sub>4</sub>  |            | ٧        |                                  | ٧            |        |                 |
| P2Y <sub>6</sub>  |            | ٧        |                                  | ٧            |        |                 |
| P2Y <sub>8</sub>  |            |          |                                  | TBO          |        | Orphan          |
| P2Y <sub>10</sub> |            |          |                                  | TBO          |        | Orphan          |
| P2Y <sub>11</sub> |            | ٧        |                                  | ٧            |        |                 |
| P2Y <sub>12</sub> |            |          |                                  | ٧            |        |                 |
| P2Y <sub>13</sub> |            |          |                                  | ٧            |        |                 |
| P2Y <sub>14</sub> |            |          |                                  | ٧            |        |                 |
|                   | Parathy    | roid ho  | rmone recep                      | otors        |        |                 |
| PTH1              |            |          |                                  | ٧            |        |                 |
| PTH2              |            |          |                                  | TBO          |        |                 |
|                   |            |          |                                  |              |        |                 |
|                   |            | QRFP     | receptor                         |              |        |                 |
| QRFP              |            |          |                                  | V            |        | GPR103          |
|                   | Platelet-  | activati | ng factor rec                    | eptor        |        |                 |
| PAF               | 3H         | ٧        |                                  | ٧            |        |                 |
|                   | Pro        | okinetic | in receptors                     |              |        |                 |
| PKR <sub>1</sub>  |            |          |                                  | TBO          |        | PROKR1 (GPR73a) |
| PKR <sub>2</sub>  |            |          |                                  | TBO          |        | PROKR2 (GPR73b) |
|                   | Prolactin- | releasir | ng peptide re                    | ceptor       |        |                 |
| PrRP              |            |          |                                  | TBO          |        | GPR10           |
|                   | Pr         | ostanoi  | d receptors                      |              |        |                 |
| DP <sub>1</sub>   |            |          |                                  | TBO          |        | PTGDR           |
| DP <sub>2</sub>   |            |          |                                  | ٧            |        | PTGDR2          |
| EP <sub>1</sub>   | 3H         |          |                                  | ٧            |        | PTGER1          |
| EP <sub>2</sub>   | 3H         |          |                                  | ٧            |        | PTGER2          |
| EP <sub>3</sub>   | 3H         |          |                                  | ٧            |        | PTGER3          |
| EP <sub>4</sub>   | 3H         |          |                                  | ٧            |        | PTGER4          |

| Target                       | А                       | vailabl  | e assays at                      | PDSP (new sy | vstem)   | Note      |  |  |  |  |
|------------------------------|-------------------------|----------|----------------------------------|--------------|----------|-----------|--|--|--|--|
| (Receptor name)              | Binding                 | $G_q$    | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin   | BRET     |           |  |  |  |  |
| FP                           |                         |          |                                  | ٧            |          | PTGFR     |  |  |  |  |
| IP1                          |                         |          |                                  | ٧            |          | PTGIR     |  |  |  |  |
| TP                           |                         |          | ٧                                | TBO          |          | TBXA2R    |  |  |  |  |
| Protease-activated receptors |                         |          |                                  |              |          |           |  |  |  |  |
| PAR <sub>1</sub>             |                         | ٧        |                                  | TBO          |          |           |  |  |  |  |
| PAR <sub>2</sub>             |                         |          |                                  | TBO          |          |           |  |  |  |  |
| PAR <sub>3</sub>             |                         |          |                                  | TBO          |          |           |  |  |  |  |
| PAR <sub>4</sub>             |                         |          |                                  | TBO          |          |           |  |  |  |  |
|                              | Relaxin                 | family p | eptide rece                      | ptors        |          |           |  |  |  |  |
| RXFP <sub>1</sub>            |                         |          | ٧                                | TBO          |          |           |  |  |  |  |
| RXFP <sub>2</sub>            |                         |          | ٧                                | TBO          |          |           |  |  |  |  |
| RXFP <sub>3</sub>            |                         |          | ٧                                | TBO          |          |           |  |  |  |  |
| RXFP <sub>4</sub>            |                         |          | ٧                                | TBO          |          |           |  |  |  |  |
|                              | Son                     | natosta  | tin receptors                    | S            |          |           |  |  |  |  |
| SST <sub>1</sub>             |                         |          |                                  | ٧            |          |           |  |  |  |  |
| SST <sub>2</sub>             |                         |          |                                  | ٧            |          |           |  |  |  |  |
| SST <sub>3</sub>             |                         |          |                                  | ٧            |          |           |  |  |  |  |
| SST <sub>4</sub>             |                         |          |                                  | ٧            |          |           |  |  |  |  |
| SST <sub>5</sub>             |                         |          | ٧                                | ٧            |          |           |  |  |  |  |
|                              | Succinate receptor      |          |                                  |              |          |           |  |  |  |  |
| Succinate                    |                         |          |                                  | TBO          |          | GPR91     |  |  |  |  |
| Ta                           | chykinin red            | eptors   | (Neurokinin                      | receptors)   |          |           |  |  |  |  |
| $NK_1$                       |                         | ٧        |                                  | ٧            |          |           |  |  |  |  |
| NK <sub>2</sub>              |                         | ٧        |                                  | ٧            |          |           |  |  |  |  |
| NK <sub>3</sub>              |                         | ٧        |                                  | ٧            |          |           |  |  |  |  |
|                              | hyrotropin-             | releasir | ng hormone                       | receptors    |          |           |  |  |  |  |
| TRH₁                         |                         |          |                                  | ТВО          |          |           |  |  |  |  |
| TRH <sub>2</sub>             |                         |          |                                  | TBO          |          |           |  |  |  |  |
|                              | Tra                     | ace ami  | ne receptor                      |              |          |           |  |  |  |  |
| TA <sub>1</sub>              |                         |          | <u>'</u>                         | ٧            |          |           |  |  |  |  |
| <del>-</del>                 | U                       | rotensi  | n receptor                       |              |          |           |  |  |  |  |
| UT                           | _                       |          | '                                | ٧            |          |           |  |  |  |  |
|                              | Vasopress               | sin and  | Oxytocin red                     |              |          |           |  |  |  |  |
| V <sub>1A</sub>              | 3H                      | ٧        |                                  | ٧            |          |           |  |  |  |  |
| V <sub>1B</sub>              | 3H                      | ٧        |                                  | ٧            |          |           |  |  |  |  |
| V <sub>2</sub>               | 3H                      | ٧        |                                  | ٧            |          |           |  |  |  |  |
| OT                           | 3H                      | ٧        |                                  | ٧            |          |           |  |  |  |  |
|                              | VIP and PACAP receptors |          |                                  |              |          |           |  |  |  |  |
| PAC <sub>1</sub>             |                         |          | ,                                | ТВО          |          | ADCYAP1R1 |  |  |  |  |
| VPAC <sub>1</sub>            |                         |          |                                  | ٧            |          | PVR2      |  |  |  |  |
| VPAC2                        |                         |          |                                  | ٧            |          | VIPR1     |  |  |  |  |
|                              | Class A orphan GPCRs    |          |                                  |              |          |           |  |  |  |  |
| CMKLR1                       |                         |          |                                  | V            | -        |           |  |  |  |  |
|                              | <u> </u>                |          | <u> </u>                         | <u> </u>     | <u> </u> | 1         |  |  |  |  |

| Target          | A <sup>1</sup> | vailabl | Note                             |            |      |        |
|-----------------|----------------|---------|----------------------------------|------------|------|--------|
| (Receptor name) | Binding        | $G_q$   | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin | BRET |        |
| GPR1            |                |         |                                  | TBO        |      |        |
| GPR3            |                |         |                                  | TBO        |      |        |
| GPR4            |                |         | ٧                                | TBO        |      |        |
| Mouse GPR4      |                |         | TBO                              |            |      |        |
| GPR6            |                |         |                                  | TBO        |      |        |
| GPR12           |                |         |                                  | TBO        |      |        |
| GPR15           |                |         |                                  | TBO        |      |        |
| GPR17           |                |         |                                  | TBO        |      |        |
| GPR18           |                |         |                                  | TBO        |      |        |
| GPR19           |                |         |                                  | TBO        |      |        |
| GPR20           |                |         |                                  | TBO        |      |        |
| GPR21           |                |         |                                  | TBO        |      |        |
| GPR22           |                |         |                                  | TBO        |      |        |
| GPR25           |                |         |                                  | TBO        |      |        |
| GPR26           |                |         |                                  | TBO        |      |        |
| GPR27           |                |         |                                  | TBO        |      |        |
| GPR31           |                |         |                                  | TBO        |      |        |
| GPR32           |                |         |                                  | TBO        |      |        |
| GPR33           |                |         |                                  | TBO        |      |        |
| GPR34           |                |         |                                  | TBO        |      |        |
| GPR35           |                |         |                                  | ٧          |      |        |
| GPR37           |                |         |                                  | TBO        |      |        |
| GPR37L1         |                |         |                                  | TBO        |      |        |
| GPR39           |                |         |                                  | ٧          |      |        |
| GPR42           |                |         |                                  |            |      | FFAR1L |
| GPR45           |                |         |                                  | TBO        |      |        |
| GPR50           |                |         |                                  | TBO        |      |        |
| GPR52           |                |         |                                  | TBO        |      |        |
| GPR55           |                |         |                                  | ٧          |      |        |
| GPR61           |                |         |                                  | TBO        |      |        |
| GPR62           |                |         |                                  | TBO        |      |        |
| GPR63           |                |         |                                  | TBO        |      |        |
| GPR65           |                |         | ٧                                | TBO        |      |        |
| Mouse GPR65     |                |         | TBO                              |            |      |        |
| GPR68           |                | ٧       | ٧                                | TBO        |      |        |
| Mouse GPR68     |                |         | TBO                              |            |      |        |
| GPR75           |                |         |                                  | TBO        |      |        |
| GPR78           |                |         |                                  | TBO        |      |        |
| GPR79           |                |         |                                  |            |      |        |
| GPR82           |                |         |                                  | TBO        |      |        |
| GPR83           |                |         |                                  | TBO        |      |        |
| GPR84           |                |         |                                  | TBO        |      |        |
| GPR85           |                |         |                                  | TBO        |      |        |

| Target          | A <sup>1</sup> | vailabl | Note                             |            |      |       |
|-----------------|----------------|---------|----------------------------------|------------|------|-------|
| (Receptor name) | Binding        | Gq      | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin | BRET |       |
| GPR87           |                |         |                                  | TBO        |      |       |
| GPR88           |                |         | ٧                                | TBO        |      |       |
| GPR101          |                |         |                                  | TBO        |      |       |
| GPR119          |                |         |                                  | TBO        |      |       |
| GPR132          |                |         |                                  | TBO        |      |       |
| GPR135          |                |         |                                  | TBO        |      |       |
| GPR139          |                |         |                                  | TBO        |      |       |
| GPR141          |                |         |                                  | TBO        |      |       |
| GPR142          |                |         |                                  | TBO        |      |       |
| GPR146          |                |         |                                  | TBO        |      |       |
| GPR148          |                |         |                                  | TBO        |      |       |
| GPR149          |                |         |                                  | TBO        |      |       |
| GPR150          |                |         |                                  | TBO        |      |       |
| GPR151          |                |         |                                  | TBO        |      |       |
| GPR152          |                |         |                                  | TBO        |      |       |
| GPR153          |                |         |                                  | TBO        |      |       |
| GPR156          |                |         |                                  | TBO        |      |       |
| GPR157          |                |         |                                  | TBO        |      |       |
| GPR158          |                |         |                                  | TBO        |      |       |
| GPR160          |                |         |                                  | TBO        |      |       |
| GPR161          |                |         |                                  | TBO        |      |       |
| GPR162          |                |         |                                  | TBO        |      |       |
| GPR171          |                |         |                                  | TBO        |      |       |
| GPR173          |                |         |                                  | TBO        |      |       |
| GPR174          |                |         |                                  | TBO        |      |       |
| GPR176          |                |         |                                  | TBO        |      |       |
| GPR182          |                |         |                                  | TBO        |      |       |
| GPR183          |                |         |                                  | TBO        |      | EBI2  |
| LGR4            |                |         |                                  |            |      | GPR48 |
| LGR5            |                |         |                                  |            |      | GPR49 |
| LGR6            |                |         |                                  |            |      |       |
| MAS1            |                |         |                                  | ٧          |      |       |
| MAS1L           |                |         |                                  | TBO        |      |       |
| MRGPRD          |                |         |                                  | TBO        |      |       |
| MRGPRE          |                |         |                                  | TBO        |      |       |
| MRGPRF          |                |         |                                  | TBO        |      |       |
| MRGPRG          |                |         |                                  | TBO        |      |       |
| MRGPRX1         |                |         |                                  | ٧          |      |       |
| MRGPRX2         |                | ٧       |                                  | ٧          |      |       |
| MRGPRX3         |                |         |                                  | TBO        |      |       |
| MRGPRX4         |                | ٧       |                                  | ٧          |      |       |
| P2RY8           |                |         |                                  | TBO        |      |       |
| P2RY10          |                |         |                                  | TBO        |      |       |

| Receptor name   Binding   Gq   Gi or Gs   B-arrestin   BRET     TAAR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Target          | A       | vailabl | Note                             |               |         |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|---------|----------------------------------|---------------|---------|--------|
| TAAR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Receptor name) | Binding | $G_q$   | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin    | BRET    |        |
| TAAR4P TAAR5 TAAR6 TAAR8 TAAR8 TBO GPR102 TAAR9 TBO Class B orphan GPCRs GPR56 GPR64 GPR64 GPR97 GPR110 GPR110 GPR113 TBO GPR114 TBO GPR115 GPR116 GPR123 GPR124 GPR124 GPR125 GPR126 GPR128 GPR128 GPR138 GPR138 GPR144 TBO GPR139 GPR159 GPR16 GPR179 GPR179 GPR189 GPR189 GPR189 GPR189 GPR189 GPR199 GPR19  | TAAR2           |         |         |                                  | TBO           |         | GPR58  |
| TAARS TAAR6 TABO TAAR8 TABO GPR102  TAAR8 TABO GPR102  TAAR9 TABO GPR102  Class B orphan GPCRS  GPR56 TABO GPR97  GPR64 TABO TABO GPR110  GPR110 TABO GPR111 TABO GPR113  GPR114 TABO GPR115  GPR115 TABO GPR115  GPR116 TABO GPR123  GPR124 TABO GPR124  GPR125 TABO GPR125  GPR126 TABO GPR126  GPR127 TABO GPR128  GPR128 TABO GPR128  GPR139 TABO GPR139  GPR144 TABO GPR139  GPR157 TABO GPR144  GPR157 TABO GPR157  Class C orphan GPCRS  GPR158 TABO GPRC5B TABO GPRC5B TABO GPRC5C TABO GPRC5C TABO GPRC5D | TAAR3           |         |         |                                  |               |         | GPR57  |
| TAAR6         TBO         GPR102           TAAR8         TBO         GPR102           TAAR9         TBO         GPR102           TAAR9         TBO         GPR10           GPR56         TBO         TBO           GPR64         TBO         GPR10           GPR10         TBO         GPR10           GPR110         TBO         GPR113           GPR113         TBO         GPR114           GPR114         TBO         GPR115           GPR115         TBO         GPR126           GPR123         TBO         GPR127           GPR124         TBO         GPR126           GPR125         TBO         GPR126           GPR128         TBO         GPR128           GPR133         TBO         TBO           GPR144         TBO         GPRCS           GPR156         TBO         TBO           GPR157         TBO         GPRCS           GPR158         TBO         GPRCS           GPRC5A         TBO         TBO           GPRC5B         TBO         GPRC5C           GPRC5C         TBO         TBO           GPRC5C         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAAR4P          |         |         |                                  |               |         |        |
| TAAR8         TBO         GPR102           TAAR9         TBO         GPR102           GPR56         TBO         TBO           GPR64         TBO         GPR97           GPR97         TBO         GPR110           GPR110         TBO         GPR113           GPR113         TBO         GPR114           GPR114         TBO         GPR115           GPR115         TBO         GPR116           GPR123         TBO         GPR124           GPR124         TBO         GPR125           GPR125         TBO         GPR126           GPR128         TBO         GPR128           GPR133         TBO         TBO           GPR144         TBO         GPR157           Class C orphan GPCRs         TBO         GPR157           GPR156         TBO         TBO           GPRC5A         TBO         TBO           GPRC5B         TBO         GPRC5C           GPRC5C         TBO         GPRC5C           GPRC5D         TBO         GPRC5C           GPRC5D         TBO         GPRC5C           GPRC5D         TBO         GPRC5C           GPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAAR5           |         |         |                                  | TBO           |         |        |
| TAAR9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TAAR6           |         |         |                                  | TBO           |         |        |
| Class B orphan GPCRs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAAR8           |         |         |                                  | TBO           |         | GPR102 |
| GPR56         TBO           GPR64         TBO           GPR97         TBO           GPR110         TBO           GPR113         TBO           GPR114         TBO           GPR115         TBO           GPR116         TBO           GPR127         TBO           GPR128         TBO           GPR129         TBO           GPR130         TBO           GPR144         TBO           GPR157         TBO           GPR158         TBO           GPR159         TBO           GPR150         TBO           GPRCSA         TBO           GPRCSB         TBO           GPRCSD         TBO           GPRCSD         TBO           GPRCSD         TBO           GPRCA         TBO           GPRCA         TBO           GPRCA         TBO           GPRCA         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAAR9           |         |         |                                  | TBO           |         |        |
| GPR64         TBO           GPR97         TBO           GPR110         TBO           GPR113         TBO           GPR114         TBO           GPR115         TBO           GPR116         TBO           GPR123         TBO           GPR124         TBO           GPR125         TBO           GPR126         TBO           GPR127         TBO           GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         OPN1LW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |         |         |                                  | Class B orpha | n GPCRs |        |
| GPR97         TBO           GPR110         TBO           GPR113         TBO           GPR114         TBO           GPR115         TBO           GPR116         TBO           GPR123         TBO           GPR124         TBO           GPR125         TBO           GPR126         TBO           GPR127         TBO           GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GPR56           |         |         |                                  | TBO           |         |        |
| GPR110         TBO           GPR113         TBO           GPR114         TBO           GPR115         TBO           GPR116         TBO           GPR123         TBO           GPR124         TBO           GPR125         TBO           GPR126         TBO           GPR127         TBO           GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR158         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         OPN1MW           OPN1MW         OPN1SW           Rhodopsin         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GPR64           |         |         |                                  | TBO           |         |        |
| GPR113         TBO           GPR114         TBO           GPR115         TBO           GPR116         TBO           GPR123         TBO           GPR124         TBO           GPR125         TBO           GRP126         TBO           GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           GPR158         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GPR97           |         |         |                                  | TBO           |         |        |
| GPR114         TBO           GPR115         TBO           GPR116         TBO           GPR123         TBO           GPR124         TBO           GPR125         TBO           GRP126         TBO           GPR128         TBO           GPR133         TBO           GPR134         TBO           GPR157         TBO           GPR158         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         OPN1LW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GPR110          |         |         |                                  | TBO           |         |        |
| GPR115         TBO           GPR116         TBO           GPR123         TBO           GPR124         TBO           GPR125         TBO           GRP126         TBO           GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           GPR158         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GPR113          |         |         |                                  | ТВО           |         |        |
| GPR116         TBO           GPR123         TBO           GPR124         TBO           GPR125         TBO           GRP126         TBO           GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         OPN1LW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GPR114          |         |         | _                                | ТВО           |         |        |
| GPR123         TBO           GPR124         TBO           GPR125         TBO           GRP126         TBO           GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         OPN1LW           OPN1LW         OPN1SW           Rhodopsin         TBO           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GPR115          |         |         |                                  | TBO           |         |        |
| GPR124         TBO           GPR125         TBO           GRP126         TBO           GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         OPN1LW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GPR116          |         |         |                                  | TBO           |         |        |
| GPR125         TBO           GRP126         TBO           GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1LW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GPR123          |         |         |                                  | TBO           |         |        |
| GRP126         TBO           GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GPR124          |         |         |                                  | TBO           |         |        |
| GPR128         TBO           GPR133         TBO           GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GPR125          |         |         |                                  | TBO           |         |        |
| GPR133         TBO           GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GRP126          |         |         |                                  | TBO           |         |        |
| GPR144         TBO           GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GPR128          |         |         |                                  | TBO           |         |        |
| GPR157         TBO           Class C orphan GPCRs           GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GPR133          |         |         |                                  | TBO           |         |        |
| Class C orphan GPCRs   TBO   GPR156   TBO   GPR158   TBO   GPRC5A   TBO   GPRC5B   TBO   GPRC5C   TBO   GPRC5D   TBO   GPRC5D   TBO   GPRC6A   TBO   GPRC6   | GPR144          |         |         |                                  | TBO           |         |        |
| GPR156         TBO           GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           OPN1LW         Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GPR157          |         |         |                                  | TBO           |         |        |
| GPR158         TBO           GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |         |         |                                  | Class C orpha | n GPCRs |        |
| GPRC5A         TBO           GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GPR156          |         |         |                                  | TBO           |         |        |
| GPRC5B         TBO           GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GPR158          |         |         |                                  | TBO           |         |        |
| GPRC5C         TBO           GPRC5D         TBO           GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GPRC5A          |         |         |                                  | TBO           |         |        |
| GPRC5D         TBO           GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GPRC5B          |         |         |                                  | TBO           |         |        |
| GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GPRC5C          |         |         |                                  | TBO           |         |        |
| GPRC6A         TBO           Opsin receptors           OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GPRC5D          |         |         |                                  |               |         |        |
| OPN1LW OPN1MW OPN1SW Rhodopsin OPN3 TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GPRC6A          |         |         |                                  | TBO           |         |        |
| OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         |         |                                  |               |         |        |
| OPN1LW         OPN1MW           OPN1SW         Rhodopsin           OPN3         TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         |         | Opsin re                         | l<br>eceptors |         |        |
| OPN1MW OPN1SW Rhodopsin OPN3 TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OPN1LW          |         |         |                                  | -1            |         |        |
| OPN1SW Rhodopsin OPN3 TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |         |         |                                  |               |         |        |
| Rhodopsin OPN3 TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |         |         |                                  |               |         |        |
| OPN3 TBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |         |         |                                  |               |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |         |                                  | ТВО           |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OPN4            |         |         |                                  |               |         |        |
| OPN5 TBO GPR136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |         |                                  | TBO           |         | GPR136 |
| Other 7TM receptors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         |         |                                  | l .           | ceptors |        |

| Target          | Available assays at PDSP (new system) |       |                                  |            |      | Note          |
|-----------------|---------------------------------------|-------|----------------------------------|------------|------|---------------|
| (Receptor name) | Binding                               | $G_q$ | G <sub>i</sub> or G <sub>s</sub> | ß-arrestin | BRET |               |
| GPR107          |                                       |       |                                  |            |      |               |
| GPR137          |                                       |       |                                  |            |      |               |
| OR51E1          |                                       |       |                                  |            |      | GPR136/GPR164 |
| TPRA1           |                                       |       |                                  |            |      | GPR175        |
| GPR143          |                                       |       |                                  | TBO        |      |               |
| GPR157          |                                       |       |                                  |            |      |               |

 Table 34. PDSP targets other than 7-TMs.

| Other targets                | Binding            | Functional assays                             | Note             |  |  |  |  |  |
|------------------------------|--------------------|-----------------------------------------------|------------------|--|--|--|--|--|
|                              | nAChRs             |                                               |                  |  |  |  |  |  |
| α2β2                         | 3H                 | ( <sup>86</sup> Rb <sup>+</sup> efflux assay) | Section 2.17     |  |  |  |  |  |
| α2β4                         | 3H                 |                                               | Assays conducted |  |  |  |  |  |
| α3β2                         | 3H                 |                                               | at PDSP          |  |  |  |  |  |
| α3β4                         | 3H                 | (86Rb+ efflux assay)                          | subcontractor    |  |  |  |  |  |
| α4β2                         | 3H                 | (86Rb+ efflux assay)                          | Georgetown Univ. |  |  |  |  |  |
| α4β4                         | 3H                 |                                               |                  |  |  |  |  |  |
| α4ß2 (Rat Brain)             | 3H                 |                                               |                  |  |  |  |  |  |
| α2β2                         | 3H                 |                                               |                  |  |  |  |  |  |
| α7                           | 3H                 |                                               |                  |  |  |  |  |  |
| Imidazoline receptors        |                    |                                               |                  |  |  |  |  |  |
| I1 (rat brain)               | 3H                 |                                               |                  |  |  |  |  |  |
| I2 (rat brain)               | 3H                 |                                               |                  |  |  |  |  |  |
|                              | GAB                | A channels                                    |                  |  |  |  |  |  |
| GABAA a1                     | 3H, BZP            |                                               |                  |  |  |  |  |  |
| GABAA a2                     | 3H, BZP            |                                               |                  |  |  |  |  |  |
| GABAA a3                     | 3H, BZP            |                                               |                  |  |  |  |  |  |
| GABAA a5                     | 3H, BZP            |                                               |                  |  |  |  |  |  |
| GABAA a6                     | 3H, BZP            |                                               |                  |  |  |  |  |  |
| GABAA (rat brain)            | 3H, BZP            |                                               |                  |  |  |  |  |  |
| GABAB (rat brain)            | 3H                 |                                               |                  |  |  |  |  |  |
|                              | Ion channels       |                                               |                  |  |  |  |  |  |
| hERG K+                      | 3H                 | TI⁺ Flux and PatchXpress                      | Section 2.9      |  |  |  |  |  |
| 2                            |                    |                                               | Section 2.10     |  |  |  |  |  |
| Ca <sup>2+</sup> (rat brain) | 3H                 |                                               |                  |  |  |  |  |  |
| Cav1.2, human                | 3H                 |                                               |                  |  |  |  |  |  |
| Na+ site II                  | 3H                 |                                               |                  |  |  |  |  |  |
|                              | Transporters       |                                               |                  |  |  |  |  |  |
| DAT                          | 3H                 | Neurotransmitter Transporter assay            | Section 2.11     |  |  |  |  |  |
| NET                          | 3H                 |                                               |                  |  |  |  |  |  |
| SAT                          | 3H                 |                                               |                  |  |  |  |  |  |
| VMAT1                        | 211                |                                               |                  |  |  |  |  |  |
| VMAT2                        | 3H                 | a receptors                                   |                  |  |  |  |  |  |
| Cigno 1                      |                    |                                               |                  |  |  |  |  |  |
| Sigma 1                      | 3H                 |                                               |                  |  |  |  |  |  |
| (Guinea Pig) Sigma 1, human  | 3H                 |                                               |                  |  |  |  |  |  |
| Sigma 1, numan               | 3H                 |                                               |                  |  |  |  |  |  |
| Sigma 2 (PC12)               | 3H                 |                                               |                  |  |  |  |  |  |
| Jigilia Z, Ilulliali         | эп                 |                                               |                  |  |  |  |  |  |
|                              | Glutamate channels |                                               |                  |  |  |  |  |  |
| Giutamate Chamileis          |                    |                                               |                  |  |  |  |  |  |

| Other targets    | Binding | Functional assays                       | Note         |
|------------------|---------|-----------------------------------------|--------------|
| NMDA (rat brain) | 3H      |                                         |              |
| AMPA (rat brain) | 3H      |                                         |              |
| PCP (rat brain)  | 3H      |                                         |              |
| Kainate          | 3H      |                                         |              |
| (rat brain)      |         |                                         |              |
| NR1 (rat brain)  | 3H      |                                         |              |
| NR2B (rat brain) | 3H      |                                         |              |
|                  |         |                                         |              |
| Other targets    |         |                                         |              |
| MDR1             |         | (Caco-2)                                |              |
| ΡΚСα             | 3H      | Fluorimetric, Omnia Ser/Thr Recombinant | Secton 2.15  |
| ΡΚСβ Ι           | 3H      | assay kits from Invitrogen              |              |
| ΡΚСβ ΙΙ          | 3H      |                                         |              |
| ΡΚСγ             | 3H      |                                         |              |
| ΡΚСδ             | 3H      |                                         |              |
| ΡΚCε             | 3H      |                                         |              |
| РКСη             |         |                                         |              |
| ΡΚСζ             |         |                                         |              |
| ΡΚСτ             |         |                                         |              |
| CHK2             |         | Fluorimetric, Omnia Ser/Thr Recombinant |              |
|                  |         | assay kits from Invitrogen              |              |
| PBR (rat brain)  | 3H      |                                         |              |
| HDAC             |         | Fluorimetric, BioMol Fluor de Lys assay | Section 2.13 |
| MAO A            |         | Fluorimetric, MAO detection kit         | Section 2.14 |
| MAO B            |         | Fluorimetric, MAO detection kit         |              |

### **Bibliography**

- 1. Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. *Nucleic Acids Res* 24(4):596–601.
- 2. Subedi GP, Johnson RW, Moniz HA, Moremen KW, Barb A (2015) High Yield Expression of Recombinant Human Proteins with the Transient Transfection of HEK293 Cells in Suspension. *J Vis Exp* (106):e53568.
- 3. Cervera L, et al. (2015) Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures. *Appl Microbiol Biotechnol* 99(23):9935–9949.
- 4. Chiu J, et al. (1999) Chronic ethanol exposure alters MK-801 binding sites in the cerebral cortex of the near-term fetal guinea pig. *Alcohol* 17(3):215–221.
- 5. Xiao Y, et al. (1998) Rat alpha3/beta4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: pharmacology of ligand binding and function. *Mol Pharmacol* 54(2):322–333.
- 6. Xiao Y, et al. (2006) Sazetidine-A, a novel ligand that desensitizes alpha4beta2 nicotinic acetylcholine receptors without activating them. *Mol Pharmacol* 70(4):1454–1460.
- 7. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochem Pharmacol* 22(23):3099–3108.
- 8. Khawaja X, Ennis C, Minchin MC (1997) Pharmacological characterization of recombinant human 5-hydroxytryptamine1A receptors using a novel antagonist radioligand, [3H]WAY-100635. *Life Sci* 60(9):653–665.
- 9. Satała G, Duszyńska B, Lenda T, Nowak G, Bojarski AJ (2017) Allosteric Inhibition of Serotonin 5-HT7 Receptors by Zinc Ions. *Mol Neurobiol*.
- 10. Andressen KW, et al. (2017) Related GPCRs couple differently to Gs: preassociation between G protein and 5-HT7 serotonin receptor reveals movement of Gαs upon receptor activation. *FASEB J*.
- 11. Middlemiss DN, Fozard JR (1983) 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. *Eur J Pharmacol* 90(1):151–153.
- 12. Middlemiss DN (1984) Stereoselective blockade at [3H]5-HT binding sites and at the 5-HT autoreceptor by propranolol. *Eur J Pharmacol* 101(3-4):289–293.
- 13. Piñeyro G, Castanon N, Hen R, Blier P (1995) Regulation of [3H]5-HT release in raphe, frontal cortex and hippocampus of 5-HT1B knock-out mice. *Neuroreport* 7(1):353–359.

- 14. Hoyer D, Engel G, Kalkman HO (1985) Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (-)[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. *Eur J Pharmacol* 118(1-2):13–23.
- 15. Schiller L, Donix M, Jähkel M, Oehler J (2006) Serotonin 1A and 2A receptor densities, neurochemical and behavioural characteristics in two closely related mice strains after long-term isolation. *Prog Neuropsychopharmacol Biol Psychiatry* 30(3):492–503.
- 16. Ueki T, et al. (2015) Yokukansan, a traditional Japanese medicine, decreases head-twitch behaviors and serotonin 2A receptors in the prefrontal cortex of isolation-stressed mice. *J Ethnopharmacol* 166:23–30.
- 17. Rashid M, et al. (2003) Identification of the binding sites and selectivity of sarpogrelate, a novel 5-HT2 antagonist, to human 5-HT2A, 5-HT2B and 5-HT2C receptor subtypes by molecular modeling. *Life Sci* 73(2):193–207.
- 18. Stain-Malmgren R, Kjellman BF, Aberg-Wistedt A (1998) Platelet serotonergic functions and light therapy in seasonal affective disorder. *Psychiatry Res* 78(3):163–172.
- 19. Riccioni T, et al. (2011) ST1936 stimulates cAMP, Ca2+, ERK1/2 and Fyn kinase through a full activation of cloned human 5-HT6 receptors. *Eur J Pharmacol* 661(1-3):8–14.
- 20. Fitzgerald LW, et al. (1999) High-affinity agonist binding correlates with efficacy (intrinsic activity) at the human serotonin 5-HT2A and 5-HT2C receptors: evidence favoring the ternary complex and two-state models of agonist action. *J Neurochem* 72(5):2127–2134.
- 21. Van Wijngaarden I, Tulp MT, Soudijn W (1990) The concept of selectivity in 5-HT receptor research. *Eur J Pharmacol* 188(6):301–312.
- 22. Wong EH, Bonhaus DW, Wu I, Stefanich E, Eglen RM (1993) Labelling of 5-hydroxytryptamine3 receptors with a novel 5-HT3 receptor ligand, [3H]RS-42358-197. *J Neurochem* 60(3):921–930.
- 23. Van den Wyngaert I, et al. (1997) Cloning and expression of a human serotonin 5-HT4 receptor cDNA. *J Neurochem* 69(5):1810–1819.
- 24. Mialet J, et al. (2000) Exploration of the ligand binding site of the human 5-HT(4) receptor by site-directed mutagenesis and molecular modeling. *Br J Pharmacol* 130(3):527–538.
- 25. Bender E, et al. (2000) Structure of the human serotonin 5-HT4 receptor gene and cloning of a novel 5-HT4 splice variant. *J Neurochem* 74(2):478–489.
- 26. Dalwadi DA, et al. (2016) Molecular mechanisms of serotonergic action of the HIV-1 antiretroviral efavirenz. *Pharmacol Res* 110:10–24.

- 27. Bach T, et al. (2001) 5HT4(a) and 5-HT4(b) receptors have nearly identical pharmacology and are both expressed in human atrium and ventricle. *Naunyn Schmiedebergs Arch Pharmacol* 363(2):146–160.
- 28. Grailhe R, Grabtree GW, Hen R (2001) Human 5-HT(5) receptors: the 5-HT(5A) receptor is functional but the 5-HT(5B) receptor was lost during mammalian evolution. *Eur J Pharmacol* 418(3):157–167.
- 29. Matthes H, et al. (1993) Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors: cloning, functional expression, and chromosomal localization. *Mol Pharmacol* 43(3):313–319.
- 30. Boess FG, Monsma FJ, Meyer V, Zwingelstein C, Sleight AJ (1997) Interaction of tryptamine and ergoline compounds with threonine 196 in the ligand binding site of the 5-hydroxytryptamine6 receptor. *Mol Pharmacol* 52(3):515–523.
- 31. Stam NJ, et al. (1997) Human serotonin 5-HT7 receptor: cloning and pharmacological characterisation of two receptor variants. *FEBS Lett* 413(3):489–494.
- 32. Peralta EG, et al. (1987) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. *EMBO J* 6(13):3923–3929.
- 33. Christopoulos A, Wilson K (2001) Interaction of anandamide with the M(1) and M(4) muscarinic acetylcholine receptors. *Brain Res* 915(1):70–78.
- 34. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. *Br J Pharmacol* 125(5):1088–1094.
- 35. Christopoulos A, Pierce TL, Sorman JL, El-Fakahany EE (1998) On the unique binding and activating properties of xanomeline at the M1 muscarinic acetylcholine receptor. *Mol Pharmacol* 53(6):1120–1130.
- 36. Chen X, et al. (2015) The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. *ACS Chem Neurosci* 6(3):476–484.
- 37. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. *Proc Natl Acad Sci USA* 104(12):5163–5168.
- 38. Nawaratne V, et al. (2008) New insights into the function of M4 muscarinic acetylcholine receptors gained using a novel allosteric modulator and a DREADD (designer receptor exclusively activated by a designer drug). *Mol Pharmacol* 74(4):1119–1131.
- 39. Wang SZ, el-Fakahany EE (1993) Application of transfected cell lines in studies of functional receptor subtype selectivity of muscarinic agonists. *J Pharmacol Exp Ther* 266(1):237–243.

- 40. Dalpiaz A, Townsend-Nicholson A, Beukers MW, Schofield PR, IJzerman AP (1998) Thermodynamics of full agonist, partial agonist, and antagonist binding to wild-type and mutant adenosine A1 receptors. *Biochem Pharmacol* 56(11):1437–1445.
- 41. Townsend-Nicholson A, Schofield PR (1994) A threonine residue in the seventh transmembrane domain of the human A1 adenosine receptor mediates specific agonist binding. *J Biol Chem* 269(4):2373–2376.
- 42. Gao ZG, Jiang Q, Jacobson KA, Ijzerman AP (2000) Site-directed mutagenesis studies of human A(2A) adenosine receptors: involvement of glu(13) and his(278) in ligand binding and sodium modulation. *Biochem Pharmacol* 60(5):661–668.
- 43. Alexander SP, Millns PJ (2001) [(3)H]ZM241385--an antagonist radioligand for adenosine A(2A) receptors in rat brain. *Eur J Pharmacol* 411(3):205–210.
- 44. Noguchi H, Muraoka R, Kigoshi S, Muramatsu I (1995) Pharmacological characterization of alpha 1-adrenoceptor subtypes in rat heart: a binding study. *Br J Pharmacol* 114(5):1026–1030.
- 45. Oshita M, Kigoshi S, Muramatsu I (1991) Three distinct binding sites for [3H]-prazosin in the rat cerebral cortex. *Br J Pharmacol* 104(4):961–965.
- 46. Chiesa IJ, Castillo LF, Lüthy IA (2008) Contribution of alpha2-adrenoceptors to the mitogenic effect of catecholestrogen in human breast cancer MCF-7 cells. *J Steroid Biochem Mol Biol* 110(1-2):170–175.
- 47. Nakagawa T, et al. (2012) Yokukansan inhibits morphine tolerance and physical dependence in mice: the role of  $\alpha_2$ A-adrenoceptor. *Neuroscience* 227:336–349.
- 48. Perry BD, U'Prichard DC (1981) [3H]rauwolscine (alpha-yohimbine): a specific antagonist radioligand for brain alpha 2-adrenergic receptors. *Eur J Pharmacol* 76(4):461–464.
- 49. Casale TB, Hart JE (1987) (-)[125I]pindolol binding to human peripheral lung beta-receptors. *Biochem Pharmacol* 36(15):2557–2564.
- 50. Koike K, Takayanagi I (1997) Characteristics of [3H]CGP12177 binding sites at beta 2- and beta 3- adrenoceptors in the guinea pig taenia caecum. *Gen Pharmacol* 28(1):73–76.
- Joseph SS, Lynham JA, Colledge WH, Kaumann AJ (2004) Binding of (-)-[3H]-CGP12177 at two sites in recombinant human beta 1-adrenoceptors and interaction with beta-blockers. *Naunyn Schmiedebergs Arch Pharmacol* 369(5):525–532.
- 52. Tsuchihashi H, Yokoyama H, Nagatomo T (1989) Binding characteristics of 3H-CGP12177 to beta-adrenoceptors in rat myocardial membranes. *Jpn J Pharmacol* 49(1):11–19.
- 53. Showalter VM, Compton DR, Martin BR, Abood ME (1996) Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. *J Pharmacol Exp Ther* 278(3):989–999.

- 54. Ross RA, et al. (1999) Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656, and AM630. *Br J Pharmacol* 126(3):665–672.
- 55. Ross RA, et al. (1998) Comparison of cannabinoid binding sites in guinea-pig forebrain and small intestine. *Br J Pharmacol* 125(6):1345–1351.
- 56. Zhou QY, et al. (1990) Cloning and expression of human and rat D1 dopamine receptors. *Nature* 347(6288):76–80.
- 57. Hall H, Wedel I, Halldin C, Kopp J, Farde L (1990) Comparison of the in vitro receptor binding properties of N-[3H]methylspiperone and [3H]raclopride to rat and human brain membranes. *J Neurochem* 55(6):2048–2057.
- 58. Schmieg N, et al. (2016) Dysbindin-1 modifies signaling and cellular localization of recombinant, human  $D_3$  and  $D_2$  receptors. *J Neurochem* 136(5):1037–1051.
- 59. Ricci A, Amenta F (1994) Dopamine D5 receptors in human peripheral blood lymphocytes: a radioligand binding study. *J Neuroimmunol* 53(1):1–7.
- 60. De Backer MD, Loonen I, Verhasselt P, Neefs JM, Luyten WH (1998) Structure of the human histamine H1 receptor gene. *Biochem J* 335 ( Pt 3):663–670.
- 61. Moguilevsky N, et al. (1994) Stable expression of human H1-histamine-receptor cDNA in Chinese hamster ovary cells. Pharmacological characterisation of the protein, tissue distribution of messenger RNA and chromosomal localisation of the gene. *Eur J Biochem* 224(2):489–495.
- 62. Kühn B, Schmid A, Harteneck C, Gudermann T, Schultz G (1996) G proteins of the Gq family couple the H2 histamine receptor to phospholipase C. *Mol Endocrinol* 10(12):1697–1707.
- 63. Chen J, Liu C, Lovenberg TW (2003) Molecular and pharmacological characterization of the mouse histamine H3 receptor. *Eur J Pharmacol* 467(1-3):57–65.
- 64. Gbahou F, et al. (2006) Compared pharmacology of human histamine H3 and H4 receptors: structure-activity relationships of histamine derivatives. *Br J Pharmacol* 147(7):744–754.
- 65. Liu C, Wilson SJ, Kuei C, Lovenberg TW (2001) Comparison of human, mouse, rat, and guinea pig histamine H4 receptors reveals substantial pharmacological species variation. *J Pharmacol Exp Ther* 299(1):121–130.
- 66. Hong WC, Amara SG (2010) Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. *J Biol Chem* 285(42):32616–32626.
- 67. Soucy JP, Mrini A, Lafaille F, Doucet G, Descarries L (1997) Comparative evaluation of [3H]WIN 35428 and [3H]GBR 12935 as markers of dopamine innervation density in brain. *Synapse* 25(2):163–175.

- 68. Tejani-Butt SM, Brunswick DJ, Frazer A (1990) [3H]nisoxetine: a new radioligand for norepinephrine uptake sites in brain. *Eur J Pharmacol* 191(2):239–243.
- 69. Wersinger C, Jeannotte A, Sidhu A (2006) Attenuation of the norepinephrine transporter activity and trafficking via interactions with alpha-synuclein. *Eur J Neurosci* 24(11):3141–3152.
- 70. D'Amato RJ, Largent BL, Snowman AM, Snyder SH (1987) Selective labeling of serotonin uptake sites in rat brain by [3H]citalopram contrasted to labeling of multiple sites by [3H]imipramine. *J Pharmacol Exp Ther* 242(1):364–371.
- 71. Tsuruda PR, et al. (2010) Influence of ligand binding kinetics on functional inhibition of human recombinant serotonin and norepinephrine transporters. *J Pharmacol Toxicol Methods* 61(2):192–204.
- 72. Barrett RW, Vaught JL (1983) Evaluation of the interactions of mu and delta selective ligands with [3H]D-Ala2-D-Leu5-enkephalin binding to mouse brain membranes. *Life Sci* 33(24):2439–2448.
- 73. Akiyama K, Gee KW, Mosberg HI, Hruby VJ, Yamamura HI (1985) Characterization of [3H][2-D-penicillamine, 5-D-penicillamine]-enkephalin binding to delta opiate receptors in the rat brain and neuroblastoma--glioma hybrid cell line (NG 108-15). *Proc Natl Acad Sci USA* 82(8):2543–2547.
- 74. Meng F, et al. (1993) Cloning and pharmacological characterization of a rat kappa opioid receptor. *Proc Natl Acad Sci USA* 90(21):9954–9958.
- 75. Lahti RA, Mickelson MM, McCall JM, Von Voigtlander PF (1985) [3H]U-69593 a highly selective ligand for the opioid kappa receptor. *Eur J Pharmacol* 109(2):281–284.
- 76. Page KJ, et al. (2000) Effects of systemic 3-nitropropionic acid-induced lesions of the dorsal striatum on cannabinoid and mu-opioid receptor binding in the basal ganglia. *Exp Brain Res* 130(2):142–150.
- 77. Raynor K, et al. (1994) Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. *Mol Pharmacol* 45(2):330–334.
- 78. Mollereau C, Moisand C, Butour JL, Parmentier M, Meunier JC (1996) Replacement of Gln280 by His in TM6 of the human ORL1 receptor increases affinity but reduces intrinsic activity of opioids. *FEBS Lett* 395(1):17–21.
- 79. Dooley CT, et al. (1997) Binding and in vitro activities of peptides with high affinity for the nociceptin/orphanin FQ receptor, ORL1. *J Pharmacol Exp Ther* 283(2):735–741.
- 80. Wise A, et al. (2003) Molecular identification of high and low affinity receptors for nicotinic acid. *J Biol Chem* 278(11):9869–9874.
- 81. Soga T, et al. (2003) Molecular identification of nicotinic acid receptor. *Biochem Biophys Res Commun* 303(1):364–369.

- 82. Tunaru S, et al. (2003) PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. *Nat Med* 9(3):352–355.
- 83. Jasper JR, Harrell CM, O'Brien JA, Pettibone DJ (1995) Characterization of the human oxytocin receptor stably expressed in 293 human embryonic kidney cells. *Life Sci* 57(24):2253–2261.
- 84. Kimura T, et al. (1994) Molecular characterization of a cloned human oxytocin receptor. *Eur J Endocrinol* 131(4):385–390.
- 85. Fuchs AR, Fuchs F, Husslein P, Soloff MS, Fernström MJ (1982) Oxytocin receptors and human parturition: a dual role for oxytocin in the initiation of labor. *Science (80- )* 215(4538):1396–1398.
- 86. Chini B, et al. (1995) Tyr115 is the key residue for determining agonist selectivity in the V1a vasopressin receptor. *EMBO J* 14(10):2176–2182.
- 87. Tahara A, et al. (1998) Pharmacological characterization of the human vasopressin receptor subtypes stably expressed in Chinese hamster ovary cells. *Br J Pharmacol* 125(7):1463–1470.
- 88. Wang C, et al. (2013) Structure of the human smoothened receptor bound to an antitumour agent. *Nature* 497(7449):338–343.
- 89. Wang C, et al. (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. *Nat Commun* 5:4355.
- 90. Wilson RJ, et al. (2006) GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist. *Br J Pharmacol* 148(3):326–339.
- 91. Abramovitz M, et al. (2000) The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. *Biochim Biophys Acta* 1483(2):285–293.
- 92. Lewin NE, Blumberg PM (2003) [3H]Phorbol 12,13-dibutyrate binding assay for protein kinase C and related proteins. *Methods Mol Biol* 233:129–156.
- 93. Johnson MS, Simpson J, Mitchell R (1996) Effect of phorbol 12, 13-dibutyrate on ligand binding, enzyme activity and translocation of protein kinase C isoforms in the alpha T3-1 gonadotrope-derived cell line. *Mol Cell Biochem* 165(1):65–75.
- 94. Parent A, Dea D, Quirion R, Poirier J (1993) [3H]phorbol ester binding sites and neuronal plasticity in the hippocampus following entorhinal cortex lesions. *Brain Res* 607(1-2):23–32.
- 95. Papadopoulos V, Guarneri P, Kreuger KE, Guidotti A, Costa E (1992) Pregnenolone biosynthesis in C6-2B glioma cell mitochondria: regulation by a mitochondrial diazepam binding inhibitor receptor. *Proc Natl Acad Sci USA* 89(11):5113–5117.

- 96. Benavides J, et al. (1984) Characterization of peripheral type benzodiazepine binding sites in human and rat platelets by using [3H]PK 11195. Studies in hypertensive patients. *Biochem Pharmacol* 33(15):2467–2472.
- 97. Agey MW, Dunn SM (1989) Kinetics of [3H]muscimol binding to the GABAA receptor in bovine brain membranes. *Biochemistry* 28(10):4200–4208.
- 98. Nadler LS, Raetzman LT, Dunkle KL, Mueller N, Siegel RE (1996) GABAA receptor subunit expression and assembly in cultured rat cerebellar granule neurons. *Brain Res Dev Brain Res* 97(2):216–225.
- 99. Chang RS, Snyder SH (1978) Benzodiazepine receptors: labeling in intact animals with [3H] flunitrazepam. *Eur J Pharmacol* 48(2):213–218.
- 100. Sieghart W, Mayer A, Drexler G (1983) Properties of [3H]flunitrazepam binding to different benzodiazepine binding proteins. *Eur J Pharmacol* 88(4):291–299.
- 101. Reynolds IJ, Miller RJ (1988) [3H]MK801 binding to the NMDA receptor/ionophore complex is regulated by divalent cations: evidence for multiple regulatory sites. *Eur J Pharmacol* 151(1):103–112.
- 102. Reynolds IJ, Miller RJ (1988) [3H]MK801 binding to the N-methyl-D-aspartate receptor reveals drug interactions with the zinc and magnesium binding sites. *J Pharmacol Exp Ther* 247(3):1025–1031.
- 103. Reynolds IJ (2001) [3H](+)MK801 radioligand binding assay at the N-methyl-D-aspartate receptor. *Curr Protoc Pharmacol* Chapter 1:Unit 1.20.
- 104. Basham ME, Sohrabji F, Singh TD, Nordeen EJ, Nordeen KW (1999) Developmental regulation of NMDA receptor 2B subunit mRNA and ifenprodil binding in the zebra finch anterior forebrain. *J Neurobiol* 39(2):155–167.
- 105. Höfner G, Wanner KT (2000) [3H]ifenprodil binding to NMDA receptors in porcine hippocampal brain membranes. *Eur J Pharmacol* 394(2-3):211–219.
- 106. Hashimoto K, London ED (1993) Further characterization of [3H]ifenprodil binding to sigma receptors in rat brain. *Eur J Pharmacol* 236(1):159–163.
- 107. Kawakami Z, et al. (2009) Neuroprotective effects of yokukansan, a traditional Japanese medicine, on glutamate-mediated excitotoxicity in cultured cells. *Neuroscience* 159(4):1397–1407.
- 108. Miralles A, Olmos G (1989) [3H]kainic acid binding sites in chick cerebellar membranes. *Comparative Biochemistry and Physiology Part C: Comparative Pharmacology* 93(2):321–325.
- 109. Crawford N, Lang TK, Kerr DS, de Vries DJ (1999) High-affinity [3H] kainic acid binding to brain membranes: a re-evaluation of ligand potency and selectivity. *J Pharmacol Toxicol Methods* 42(3):121–125.

- 110. Ornstein PL, et al. (1998) [3H]LY341495, a highly potent, selective and novel radioligand for labeling Group II metabotropic glutamate receptors. *Bioorg Med Chem Lett* 8(14):1919–1922.
- 111. Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD (2001) [3H]LY341495 binding to group II metabotropic glutamate receptors in rat brain. *J Pharmacol Exp Ther* 298(2):453–460.
- 112. Monn JA, et al. (2007) Synthesis and metabotropic glutamate receptor activity of S-oxidized variants of (-)-4-amino-2-thiabicyclo-[3.1.0]hexane-4,6-dicarboxylate: identification of potent, selective, and orally bioavailable agonists for mGlu2/3 receptors. *J Med Chem* 50(2):233–240.
- 113. Malherbe P, et al. (2003) Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. *Mol Pharmacol* 64(4):823–832.
- 114. Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD (2000) Binding of [3H](2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl) glycine ([3H]LY341495) to cell membranes expressing recombinant human group III metabotropic glutamate receptor subtypes. *Naunyn Schmiedebergs Arch Pharmacol* 362(6):546–554.
- 115. Sguazzini E, Schmidt HR, Iyer KA, Kruse AC, Dukat M (2017) Reevaluation of fenpropimorph as a σ receptor ligand: Structure-affinity relationship studies at human σ1 receptors. *Bioorg Med Chem Lett* 27(13):2912–2919.
- 116. Alon A, et al. (2017) Identification of the gene that codes for the  $\sigma 2$  receptor. *Proc Natl Acad Sci USA* 114(27):7160–7165.
- 117. Schmidt HR, et al. (2016) Crystal structure of the human σ1 receptor. *Nature* 532(7600):527–530.
- 118. Pelet C, Mironneau C, Rakotoarisoa L, Neuilly G (1995) Angiotensin II receptor subtypes and contractile responses in portal vein smooth muscle. *Eur J Pharmacol* 279(1):15–24.
- 119. Widdowson PS, Renouard A, Vilaine JP (1993) Binding of [3H]angiotensin II and [3H]DuP 753 (Losartan) to rat liver homogenates reveals multiple sites. Relationship to AT1a- and AT1b-type angiotensin receptors and novel nonangiotensin binding sites. *Peptides* 14(4):829–837.
- 120. Lahti RA, Cochrane EV, Roberts RC, Conley RR, Tamminga CA (1998) [3H]Neurotensin receptor densities in human postmortem brain tissue obtained from normal and schizophrenic persons. An autoradiographic study. *J Neural Transm* 105(4-5):507–516.
- 121. Schotte A, Leysen JE, Laduron PM (1986) Evidence for a displaceable non-specific [3H]neurotensin binding site in rat brain. *Naunyn Schmiedebergs Arch Pharmacol* 333(4):400–405.
- 122. Kanba KS, Kanba S, Okazaki H, Richelson E (1986) Binding of [3H]neurotensin in human brain: properties and distribution. *J Neurochem* 46(3):946–952.

- 123. Zucker M, Weizman A, Rehavi M (2001) Characterization of high-affinity [3H]TBZOH binding to the human platelet vesicular monoamine transporter. *Life Sci* 69(19):2311–2317.
- 124. Rampe D, Kim HS, Lacerda AE, Birnbaumer L, Brown AM (1990) [3H]PN200-110 binding in a fibroblast cell line transformed with the alpha 1 subunit of the skeletal muscle L-type Ca2+ channel. *Biochem Biophys Res Commun* 169(3):825–831.
- 125. Striessnig J, Murphy BJ, Catterall WA (1991) Dihydropyridine receptor of L-type Ca2+ channels: identification of binding domains for [3H](+)-PN200-110 and [3H]azidopine within the alpha 1 subunit. Proc Natl Acad Sci USA 88(23):10769–10773.
- 126. Ehlert FJ, Roeske WR, Itoga E, Yamamura HI (1982) The binding of [3H]nitrendipine to receptors for calcium channel antagonists in the heart, cerebral cortex, and ileum of rats. *Life Sci* 30(25):2191–2202.
- 127. Gould RJ, Murphy KM, Snyder SH (1982) [3H]nitrendipine-labeled calcium channels discriminate inorganic calcium agonists and antagonists. *Proc Natl Acad Sci USA* 79(11):3656–3660.
- 128. Friese J, Gleitz J (1998) Kavain, dihydrokavain, and dihydromethysticin non-competitively inhibit the specific binding of [3H]-batrachotoxinin-A 20-alpha-benzoate to receptor site 2 of voltage-gated Na+channels. *Planta Med* 64(5):458–459.
- 129. Gusovsky F, et al. (1990) Voltage-dependent sodium channels in synaptoneurosomes: studies with 22Na+ influx and [3H]saxitoxin and [3H]batrachotoxinin-A 20-alpha-benzoate binding. Effects of proparacaine isothiocyanate. *Brain Res* 518(1-2):101–106.
- 130. Finlayson K, Turnbull L, January CT, Sharkey J, Kelly JS (2001) [3H]dofetilide binding to HERG transfected membranes: a potential high throughput preclinical screen. *Eur J Pharmacol* 430(1):147–148.
- 131. Huang X-P, Mangano T, Hufeisen S, Setola V, Roth BL (2010) Identification of human Ether-à-go-go related gene modulators by three screening platforms in an academic drug-discovery setting. *Assay Drug Dev Technol* 8(6):727–742.
- 132. Bricca G, et al. (1994) Human brain imidazoline receptors: further characterization with [3H]clonidine. *Eur J Pharmacol* 266(1):25–33.
- 133. Molderings GJ, Moura D, Fink K, Bönisch H, Göthert M (1993) Binding of [3H]clonidine to I1-imidazoline sites in bovine adrenal medullary membranes. *Naunyn Schmiedebergs Arch Pharmacol* 348(1):70–76.
- 134. Cahill GM, Besharse JC (1989) Retinal melatonin is metabolized within the eye of xenopus laevis. *Proc Natl Acad Sci USA* 86(3):1098–1102.
- 135. Benítez-King G, Huerto-Delgadillo L, Antón-Tay F (1993) Binding of 3H-melatonin to calmodulin. *Life Sci* 53(3):201–207.

- 136. Legros C, et al. (2014) Melatonin MT<sub>1</sub> and MT<sub>2</sub> receptors display different molecular pharmacologies only in the G-protein coupled state. *Br J Pharmacol* 171(1):186–201.
- 137. Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S (2012) A simple method for quantifying functional selectivity and agonist bias. *ACS Chem Neurosci* 3(3):193–203.
- 138. Gregory KJ, Sexton PM, Tobin AB, Christopoulos A (2012) Stimulus bias provides evidence for conformational constraints in the structure of a G protein-coupled receptor. *J Biol Chem* 287(44):37066–37077.
- 139. Leach K, Sexton PM, Christopoulos A (2007) Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. *Trends Pharmacol Sci* 28(8):382–389.
- 140. Kingston RE, Chen CA, Rose JK (2003) Calcium phosphate transfection. *Curr Protoc Mol Biol* Chapter 9:Unit 9.1.
- 141. Calcium phosphate–mediated transfection of eukaryotic cells (2005) Nat Methods 2(4):319–320.
- 142. Wacker D, et al. (2013) Structural features for functional selectivity at serotonin receptors. *Science* (80-) 340(6132):615–619.
- 143. Huang X-P, et al. (2009) Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment. *Mol Pharmacol* 76(4):710–722.
- 144. Laferrère B, et al. (1992) Effects of bombesin, of a new bombesin agonist (BIM187) and a new antagonist (BIM189) on food intake in rats, in relation to cholecystokinin. *Eur J Pharmacol* 215(1):23–28.
- 145. Lugrin D, et al. (1991) Reduced peptide bond pseudopeptide analogues of neurotensin: binding and biological activities, and in vitro metabolic stability. *Eur J Pharmacol* 205(2):191–198.
- 146. Peukert S, et al. (2014) Discovery of 2-Pyridylpyrimidines as the First Orally Bioavailable GPR39 Agonists. *ACS Med Chem Lett* 5(10):1114–1118.
- 147. Sato S, Huang X-P, Kroeze WK, Roth BL (2016) Discovery and characterization of novel GPR39 agonists allosterically modulated by zinc. *Mol Pharmacol* 90(6):726–737.
- 148. Bassilana F, et al. (2014) Target identification for a Hedgehog pathway inhibitor reveals the receptor GPR39. *Nat Chem Biol* 10(5):343–349.
- 149. Briscoe CP, et al. (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. *Br J Pharmacol* 148(5):619–628.

- 150. Nakamoto K, Aizawa F, Nishinaka T, Tokuyama S (2015) Regulation of prohormone convertase 2 protein expression via GPR40/FFA1 in the hypothalamus. *Eur J Pharmacol* 762:459–463.
- 151. Tanaka H, et al. (2013) Chronic treatment with novel GPR40 agonists improve whole-body glucose metabolism based on the glucose-dependent insulin secretion. *J Pharmacol Exp Ther* 346(3):443–452.
- 152. Liu JJ, et al. (2014) Optimization of GPR40 agonists for type 2 diabetes. *ACS Med Chem Lett* 5(5):517–521.
- 153. Lansu K, et al. (2017) In silico design of novel probes for the atypical opioid receptor MRGPRX2. *Nat Chem Biol* 13(5):529–536.
- 154. Kroeze WK, et al. (2015) PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. *Nat Struct Mol Biol* 22(5):362–369.
- 155. Lew MJ, Angus JA (1995) Analysis of competitive agonist-antagonist interactions by nonlinear regression. *Trends Pharmacol Sci* 16(10):328–337.
- 156. Lew MJ, Angus JA (1997) An improved method for analysis of competitive agonist/antagonist interactions by non-linear regression. *Ann N Y Acad Sci* 812:179–181.
- 157. Christopoulos A, Parsons AM, Lew MJ, El-Fakahany EE (1999) The assessment of antagonist potency under conditions of transient response kinetics. *Eur J Pharmacol* 382(3):217–227.
- 158. Wang C, et al. (2013) Structural basis for molecular recognition at serotonin receptors. *Science (80-)* 340(6132):610–614.
- 159. Wu H, et al. (2012) Structure of the human  $\kappa$ -opioid receptor in complex with JDTic. *Nature* 485(7398):327–332.
- 160. Fenalti G, et al. (2014) Molecular control of  $\delta$ -opioid receptor signalling. *Nature* 506(7487):191–196.
- 161. Huang X-P, et al. (2015) Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. *Nature* 527(7579):477–483.
- 162. Insel PA, Ostrom RS (2003) Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. *Cell Mol Neurobiol* 23(3):305–314.
- 163. Seamon KB, Daly JW (1981) Forskolin: a unique diterpene activator of cyclic AMP-generating systems. *J Cyclic Nucleotide Res* 7(4):201–224.
- 164. Iyengar R (1993) Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. *FASEB J* 7(9):768–775.
- 165. Shimomura Y, et al. (2002) Identification of neuropeptide W as the endogenous ligand for orphan G-protein-coupled receptors GPR7 and GPR8. *J Biol Chem* 277(39):35826–35832.

- 166. Coleman RA, Humphrey PP, Kennedy I, Levy GP, Lumley P (1981) Comparison of the actions of U-46619, a prostaglandin H2-analogue, with those of prostaglandin H2 and thromboxane A2 on some isolated smooth muscle preparations. *Br J Pharmacol* 73(3):773–778.
- 167. Cimetière B, et al. (1998) Synthesis and biological evaluation of new tetrahydronaphthalene derivatives as thromboxane receptor antagonists. *Bioorg Med Chem Lett* 8(11):1375–1380.
- 168. Ludwig M-G, et al. (2003) Proton-sensing G-protein-coupled receptors. *Nature* 425(6953):93–98.
- 169. Barnea G, et al. (2008) The genetic design of signaling cascades to record receptor activation. *Proc Natl Acad Sci USA* 105(1):64–69.
- 170. Liu C, et al. (2011) Oxysterols direct B-cell migration through EBI2. Nature 475(7357):519–523.
- 171. Hannedouche S, et al. (2011) Oxysterols direct immune cell migration via EBI2. *Nature* 475(7357):524–527.
- 172. Peng Y, et al. (2018) 5-HT2CReceptor Structures Reveal the Structural Basis of GPCR Polypharmacology. *Cell* 172(4):719–730.e14.
- 173. Xie K, et al. (2015) Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling. *Elife* 4.
- 174. Grundmann M, et al. (2018) Lack of beta-arrestin signaling in the absence of active G proteins. *Nat Commun* 9(1):341.
- 175. Hamdan FF, Percherancier Y, Breton B, Bouvier M (2006) Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET). *Curr Protoc Neurosci* Chapter 5:Unit 5.23.
- 176. Hamdan FF, Audet M, Garneau P, Pelletier J, Bouvier M (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. *J Biomol Screen* 10(5):463–475.
- 177. Saulière A, et al. (2012) Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. *Nat Chem Biol* 8(7):622–630.
- 178. Zeng H, et al. (2008) Improved throughput of PatchXpress hERG assay using intracellular potassium fluoride. *Assay Drug Dev Technol* 6(2):235–241.
- 179. Schwartz JW, Blakely RD, DeFelice LJ (2003) Binding and transport in norepinephrine transporters. Real-time, spatially resolved analysis in single cells using a fluorescent substrate. *J Biol Chem* 278(11):9768–9777.
- 180. Chen N-H, Reith MEA, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. *Pflugers Arch* 447(5):519–531.

- 181. Galli A, DeFelice LJ, Duke BJ, Moore KR, Blakely RD (1995) Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. *J Exp Biol* 198(Pt 10):2197–2212.
- 182. Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. *Nature* 350(6316):350–354.
- 183. Blakely RD, DeFelice LJ, Galli A (2005) Biogenic amine neurotransmitter transporters: just when you thought you knew them. *Physiology (Bethesda)* 20:225–231.
- 184. Bolden-Watson C, Richelson E (1993) Blockade by newly-developed antidepressants of biogenic amine uptake into rat brain synaptosomes. *Life Sci* 52(12):1023–1029.
- 185. Tiberghien F, Loor F (1996) Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. *Anticancer Drugs* 7(5):568–578.
- 186. Wigler PW (1999) PSC833, cyclosporin A, and dexniguldipine effects on cellular calcein retention and inhibition of the multidrug resistance pump in human leukemic lymphoblasts. *Biochem Biophys Res Commun* 257(2):410–413.
- 187. Essodaigui M, Broxterman HJ, Garnier-Suillerot A (1998) Kinetic analysis of calcein and calcein-acetoxymethylester efflux mediated by the multidrug resistance protein and P-glycoprotein. *Biochemistry* 37(8):2243–2250.
- 188. Eneroth A, et al. (2001) Evaluation of a vincristine resistant Caco-2 cell line for use in a calcein AM extrusion screening assay for P-glycoprotein interaction. *Eur J Pharm Sci* 12(3):205–214.
- 189. Sevin E, et al. (2013) Accelerated Caco-2 cell permeability model for drug discovery. *J Pharmacol Toxicol Methods* 68(3):334–339.
- 190. Krasteva S, Heiss E, Krenn L (2011) Optimization and application of a fluorimetric assay for the identification of histone deacetylase inhibitors from plant origin. *Pharm Biol* 49(6):658–668.
- 191. Howitz KT (2015) Screening and profiling assays for HDACs and sirtuins. *Drug Discov Today Technol* 18:38–48.
- 192. Yeung F, et al. (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. *EMBO J* 23(12):2369–2380.
- 193. Howitz KT, et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. *Nature* 425(6954):191–196.
- 194. Peng L, Zhang G, Zhang D, Wang Y, Zhu D (2010) A direct continuous fluorometric turn-on assay for monoamine oxidase B and its inhibitor-screening based on the abnormal fluorescent behavior of silole. *Analyst* 135(7):1779–1784.

- 195. Zhou M, Panchuk-Voloshina N (1997) A one-step fluorometric method for the continuous measurement of monoamine oxidase activity. *Anal Biochem* 253(2):169–174.
- 196. Zhou JJ, Zhong B, Silverman RB (1996) Direct continuous fluorometric assay for monoamine oxidase B. *Anal Biochem* 234(1):9–12.
- 197. Matsumoto T, et al. (1985) A sensitive fluorometric assay for serum monoamine oxidase with kynuramine as substrate. *Clin Biochem* 18(2):126–129.
- 198. Suzuki O, Noguchi E, Yagi K (1976) A simple fluorometric assay for type B monoamine oxidase activity in rat tissues. *J Biochem* 79(6):1297–1299.
- 199. Shults MD, Janes KA, Lauffenburger DA, Imperiali B (2005) A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. *Nat Methods* 2(4):277–283.
- 200. Shults MD, et al. (2007) A multiplexed protein kinase assay. Chembiochem 8(8):933–942.
- 201. Shults MD, Imperiali B (2003) Versatile fluorescence probes of protein kinase activity. *J Am Chem Soc* 125(47):14248–14249.